Cargando…

Handbook of linear partial differential equations for engineers and scientists /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Poli͡anin, A. D. (Andreĭ Dmitrievich) (Autor), Nazaĭkinskiĭ, V. E. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton : CRC Press, [2016]
Edición:Second edition.
Colección:Online access with DDA: Askews (Maths)
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Exact solutions
  • First-order equations with two independent variables
  • First-order equations with three or more independent variables
  • Second-order parabolic equations with one space variable
  • Second-order parabolic equations with three or more space variables
  • Second-order hyperbolic equations with one space variable
  • Second-order hyperbolic equations with two space variables
  • Second-order hyperbolic equations with three or more space variables
  • Second-order elliptic equations with two space variables
  • Second-order elliptic equations with three or more space variables
  • Higher-order partial differential equations
  • Systems of linear partial differential equations
  • Analytic methods
  • Methods for first-order linear PDEs
  • Second-order linear PDEs: classification, problems, particular solutions
  • Separation of variables and integral transform methods
  • Cauchy problem. Fundamental solutions
  • Boundary value problems. Green's function
  • Duhamel's principles. Some transformations
  • Systems of linear coupled PDEs. decomposition methods
  • Some asmptotic results and formulas
  • Elements of theory of generalized functions
  • Symbolic and numerical solutions with Maple, Mathematica, and MATLAB
  • Linear partial differential equations with Maple
  • Linear partial differential equations with Mathematica
  • Linear partial differential equations with MATLAB
  • Tables and supplements
  • Elementary functions and their properties
  • Finite sums and infinite series
  • Indefinite and definite integrals
  • Integral transforms
  • Curvilinear coordinates, vectors, operations, and differential relations
  • Special functions and their properties.