Cargando…

Data exploration in Python /

"If you're a fledgling data scientist with only cursory statistical training and little experience with real world data sets, you may feel like you're stumbling around in the dark when you're asked to interpret and present data to decision makers. How do you validate the data? Wh...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2015.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000Ii 4500
001 OR_ocn930889502
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 151203s2015 xx 211 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d UAB  |d OCLCO 
035 |a (OCoLC)930889502 
037 |a CL0500000681  |b Safari Books Online 
050 4 |a Q180.55.Q36 
049 |a UAMI 
100 1 |a Downey, Allen B.,  |e on-screen presenter. 
245 1 0 |a Data exploration in Python /  |c Allen B. Downey. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2015. 
300 |a 1 online resource (1 streaming video file (3 hr., 30 min., 10 sec.)) :  |b digital, sound, color 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from resource description page (viewed December 3, 2015). 
511 0 |a On-screen presenter, Allen B. Downey. 
520 |a "If you're a fledgling data scientist with only cursory statistical training and little experience with real world data sets, you may feel like you're stumbling around in the dark when you're asked to interpret and present data to decision makers. How do you validate the data? What analytic model should you use? How do you differentiate between correlation and causation? How do you ensure that your data is solid and your conclusions are on target? Allen Downey, Professor of Computer Science at Olin College of Engineering, author of Think Stats, Think Python, and Think Complexity, provides safe passage around the common pitfalls of exploratory data analysis, so you can manage, analyze, and present data with confidence."--Resource description page. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a ANACONDA (Electronic resource) 
630 0 7 |a ANACONDA (Electronic resource)  |2 fast  |0 (OCoLC)fst01726986 
650 0 |a Quantitative research  |x Computer programs. 
650 0 |a Python (Computer program language) 
650 6 |a Recherche quantitative  |x Logiciels. 
650 6 |a Python (Langage de programmation) 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491938324/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP