Cargando…

Advanced machine learning with scikit-learn : tools and techniques for predictive analytics in Python /

"In this Advanced Machine Learning with scikit-learn training course, expert author Andreas Mueller will teach you how to choose and evaluate machine learning models. This course is designed for users that already have experience with Python. You will start by learning about model complexity, o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Mueller, Andreas C. (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, [2015]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000Ii 4500
001 OR_ocn927145203
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 151029s2015 xx 225 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCO 
035 |a (OCoLC)927145203 
037 |a CL0500000661  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Mueller, Andreas C.,  |e speaker. 
245 1 0 |a Advanced machine learning with scikit-learn :  |b tools and techniques for predictive analytics in Python /  |c with Andreas Mueller. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c [2015] 
300 |a 1 online resource (1 streaming video file (3 hr., 44 min., 6 sec.)) :  |b digital, sound, color 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Andreas Mueller. 
500 |a Title from title screen (viewed October 26, 2015). 
500 |a Date of publication from resource description page. 
520 |a "In this Advanced Machine Learning with scikit-learn training course, expert author Andreas Mueller will teach you how to choose and evaluate machine learning models. This course is designed for users that already have experience with Python. You will start by learning about model complexity, overfitting and underfitting. From there, Andreas will teach you about pipelines, advanced metrics and imbalanced classes, and model selection for unsupervised learning. This video tutorial also covers dealing with categorical variables, dictionaries, and incomplete data, and how to handle text data. Finally, you will learn about out of core learning, including the sci-learn interface for out of core learning and kernel approximations for large-scale non-linear classification. Once you have completed this computer based training course, you will have learned everything you need to know to be able to choose and evaluate machine learning models. Working files are included, allowing you to follow along with the author throughout the lessons. "--Resource description page. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
856 4 0 |u https://learning.oreilly.com/videos/~/9781771374927/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP