Cargando…

Probabilistic reasoning in intelligent systems : networks of plausible inference /

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pearl, Judea (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Francisco, CA : Morgan Kaufmann Publishers, [1988]
Edición:Revised second printing.
Colección:Morgan Kaufmann series in representation and reasoning.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn927108286
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 151028s1988 caua ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d CEF  |d OCLCQ  |d UAB  |d RDF  |d DST  |d OCLCO  |d OCLCQ 
020 |a 9780080514895 
020 |a 0080514898 
020 |z 9781558604797 
029 1 |a GBVCP  |b 897158938 
035 |a (OCoLC)927108286 
037 |a CL0500000664  |b Safari Books Online 
050 4 |a TA347.A78 
082 0 4 |a 006.3 
049 |a UAMI 
100 1 |a Pearl, Judea,  |e author. 
245 1 0 |a Probabilistic reasoning in intelligent systems :  |b networks of plausible inference /  |c Judea Pearl. 
250 |a Revised second printing. 
264 1 |a San Francisco, CA :  |b Morgan Kaufmann Publishers,  |c [1988] 
264 4 |c ©1988 
300 |a 1 online resource (1 volume) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The Morgan Kaufmann series in representation and reasoning 
588 0 |a Online resource; title from title page (Safari, viewed October 26, 2015). 
504 |a Includes bibliographical references and indexes. 
505 0 |a Front Cover; Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Copyright Page; Dedication; Preface; Table of Contents; Chapter 1. UNCERTAINTY IN AI SYSTEMS: AN OVERVIEW; 1.1 INTRODUCTION; 1.2 EXTENSIONAL SYSTEMS: MERITS, DEFICIENCIES, AND REMEDIES; 1.3 INTENSIONAL SYSTEMS AND NETWORK REPRESENTATIONS; 1.4 THE CASE FOR PROBABILITIES; 1.5 QUALITATIVE REASONING WITH PROBABILITIES; 1.6 BIBLIOGRAPHICAL AND HISTORICAL REMARKS; Chapter 2. BAYESIAN INFERENCE; 2.1 BASIC CONCEPTS; 2.2 HIERARCHICAL MODELING; 2.3 EPISTEMOLOGICAL ISSUES OF BELIEF UPDATING 
505 8 |a 2.4 BIBLIOGRAPHICAL AND HISTORICAL REMARKSExercises; Chapter 3. MARKOV AND BAYESIAN NETWORKS; 3.1 FROM NUMERICAL TO GRAPHICAL REPRESENTATIONS; 3.2 MARKOV NETWORKS; 3.3 BAYESIAN NETWORKS; 3.4 BIBLIOGRAPHICAL AND HISTORICAL REMARKS; Exercises; APPENDIX 3-A Proof of Theorem 3; APPENDIX 3-B Proof of Theorem 4; Chapter 4. BELIEF UPDATING BY NETWORK PROPAGATION; 4.1 AUTONOMOUS PROPAGATION AS A COMPUTATIONAL PARADIGM; 4.2 BELIEF PROPAGATION IN CAUSAL TREES; 4.3 BELIEF PROPAGATION IN CAUSAL POLYTREES (SINGLY CONNECTED NETWORKS); 4.4 COPING WITH LOOPS; 4.5 WHAT ELSE CAN BAYESIAN NETWORKS COMPUTE? 
505 8 |a 4.6 BIBLIOGRAPHICAL AND HISTORICAL REMARKSExercises; APPENDIX 4-A Auxilliary Derivations for Section 4.5.3; Chapter 5. DISTRIBUTED REVISION OF COMPOSITE BELIEFS; 5.1 INTRODUCTION; 5.2 ILLUSTRATING THE PROPAGATION SCHEME; 5.3 BELIEF REVISION IN SINGLY CONNECTED NETWORKS; 5.4 DIAGNOSIS OF SYSTEMS WITH MULTIPLE FAULTS; 5.5 APPLICATION TO MEDICAL DIAGNOSIS; 5.6 THE NATURE OF EXPLANATIONS; 5.7 CONCLUSIONS; 5.8 BIBLIOGRAPHICAL AND HISTORICAL REMARKS; Exercises; Chapter 6. DECISION AND CONTROL; 6.1 FROM BELIEFS TO ACTIONS: INTRODUCTION TO DECISION ANALYSIS; 6.2 DECISION TREES AND INFLUENCE DIAGRAMS 
505 8 |a 6.3 THE VALUE OF INFORMATION6.4 RELEVANCE-BASED CONTROL; 6.5 BIBLIOGRAPHICAL AND HISTORICAL REMARKS; Exercises; Chapter 7. TAXONOMIC HIERARCHIES, CONTINUOUS VARIABLES, AND UNCERTAIN PROBABILITIES; 7.1 EVIDENTIAL REASONING IN TAXONOMIC HIERARCHIES; 7.2 MANAGING CONTINUOUS VARIABLES; 7.3 REPRESENTING UNCERTAINTY ABOUT PROBABILITIES; 7.4 BIBLIOGRAPHICAL AND HISTORICAL REMARKS; Exercises; APPENDIX 7-A Derivation of Propagation Rules For Continuous Variables; Chapter 8. LEARNING STRUCTURE FROM DATA; 8.1 CAUSALITY, MODULARITY, AND TREE STRUCTURES; 8.2 STRUCTURING THE OBSERVABLES 
505 8 |a 8.3 LEARNING HIDDEN CAUSE8.4 BIBLIOGRAPHICAL AND HISTORICAL REMARKS; EXERCISES; APPENDIX 8-A Proof of Theorems 1 and 2; APPENDIX 8-B Conditions for Star-Decomposability (After Lazarfeld [1966]); Chapter 9. NON-BAYESIAN FORMALISMS FOR MANAGING UNCERTAINTY; 9.1 THE DEMPSTER-SHAFER THEORY; 9.2 TRUTH MAINTENANCE SYSTEMS; 9.3 PROBABILISTIC LOGIC; 9.4 BIBLIOGRAPHICAL AND HISTORICAL REMARKS; Exercises; Chapter 10. LOGIC AND PROBABILITY: THE STRANGE CONNECTION; 10.1 INTRODUCTION TO NONMONOTONIC REASONING; 10.2 PROBABILISTIC SEMANTICS FOR DEFAULT REASONING 
520 |a Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provid. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Artificial intelligence. 
650 0 |a Reasoning. 
650 0 |a Probabilities. 
650 2 |a Artificial Intelligence 
650 2 |a Probability 
650 6 |a Intelligence artificielle. 
650 6 |a Probabilités. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a probability.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Probabilities.  |2 fast  |0 (OCoLC)fst01077737 
650 7 |a Reasoning.  |2 fast  |0 (OCoLC)fst01091282 
650 7 |a Probabilitats.  |2 lemac 
830 0 |a Morgan Kaufmann series in representation and reasoning. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780080514895/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP