Cargando…

Mastering data analysis with R : gain clear insights into your data and solve real-world data science problems with R--from data munging to modeling and visualization /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Daróczi, Gergely (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2015.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn926118236
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 151023s2015 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d CEF  |d OCLCQ  |d WYU  |d UAB  |d RDF  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781783982035 
020 |a 1783982039 
020 |z 9781783982028 
029 1 |a GBVCP  |b 897168585 
035 |a (OCoLC)926118236 
037 |a CL0500000663  |b Safari Books Online 
050 4 |a QA76.9.D343 
082 0 4 |a 519.5  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Daróczi, Gergely,  |e author. 
245 1 0 |a Mastering data analysis with R :  |b gain clear insights into your data and solve real-world data science problems with R--from data munging to modeling and visualization /  |c Gergely Daróczi. 
246 3 0 |a Gain clear insights into your data and solve real-world data science problems with R--from data munging to modeling and visualization 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2015. 
300 |a 1 online resource (1 volume) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Community experience distilled 
588 0 |a Online resource; title from cover page (Safari, viewed October 21, 2015). 
500 |a Includes index. 
505 0 |a Cover ; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Hello, Data!; Loading text files of a reasonable size; Data files larger than the physical memory; Benchmarking text file parsers; Loading a subset of text files; Filtering flat files before loading to R; Loading data from databases; Setting up the test environment; MySQL and MariaDB; PostgreSQL; Oracle database; ODBC database access; Using a graphical user interface to connect to databases; Other database backends; Importing data from other statistical systems 
505 8 |a Loading Excel spreadsheetsSummary; Chapter 2: Getting Data from the Web; Loading datasets from the Internet; Other popular online data formats; Reading data from HTML tables; Reading tabular data from static Web pages; Scraping data from other online sources; R packages to interact with data source APIs; Socrata Open Data API; Finance APIs; Fetching time series with Quandl; Google documents and analytics; Online search trends; Historical weather data; Other online data sources; Summary; Chapter 3: Filtering and Summarizing Data; Drop needless data; Drop needless data in an efficient way 
505 8 |a Drop needless data in another efficient wayAggregation; Quicker aggregation with base R commands; Convenient helper functions; High-performance helper functions; Aggregate with data.table; Running benchmarks; Summary functions; Adding up the number of cases in subgroups; Summary; Chapter 4: Restructuring Data; Transposing matrices; Filtering data by string matching; Rearranging data; dplyr versus data.table; Computing new variables; Memory profiling; Creating multiple variables at a time; Computing new variables with dplyr; Merging datasets; Reshaping data in a flexible way 
505 8 |a Converting wide tables to the long table formatConverting long tables to the wide table format; Tweaking performance; The evolution of the reshape packages; Summary; Chapter 5: Building Models (authored by Renata Nemeth and Gergely Toth); The motivation behind multivariate models; Linear regression with continuous predictors; Model interpretation; Multiple predictors; Model assumptions; How well does the line fit in the data?; Discrete predictors; Summary; Chapter 6: Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely Toth); The modeling workflow; Logistic regression 
505 8 |a Data considerationsGoodness of model fit; Model comparison; Models for count data; Poisson regression; Negative binomial regression; Multivariate non-linear models; Summary; Chapter 7: Unstructured Data; Importing the corpus; Cleaning the corpus; Visualizing the most frequent words in the corpus; Further cleanup; Stemming words; Lemmatisation; Analyzing the associations among terms; Some other metrics; The segmentation of documents; Summary; Chapter 8: Polishing Data; The types and origins of missing data; Identifying missing data; By-passing missing values 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a R (Computer program language) 
650 0 |a Information visualization. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a R (Langage de programmation) 
650 6 |a Visualisation de l'information. 
650 7 |a Data mining  |2 fast 
650 7 |a Information visualization  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
830 0 |a Community experience distilled. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781783982028/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP