Cargando…

Thermofluid modeling for energy efficiency applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Khan, M. Masud Khan (Editor ), Hassan, Nur M. S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK : Academic Press, [2016]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Front Cover; Thermofluid Modeling for Energy Efficiency Applications; Copyright Page; Contents; List of Contributors; Preface; 1 Performance Evaluation of Hybrid Earth Pipe Cooling with Horizontal Piping System; 1.1 Introduction; 1.2 Earth Pipe Cooling Technology; 1.3 Green Roof System; 1.4 Experimental Design and Measurement; 1.5 Model Description; 1.5.1 Modeling Equation; 1.5.2 Geometry of the Model; 1.5.3 Mesh Generation; 1.5.4 Solver Approach; 1.6 Results and Discussion; 1.7 Conclusion; Acknowledgments; References; 2 Thermal Efficiency Modeling in a Subtropical Data Center
  • 2.1 Introduction2.2 CFD Modeling of Data Center; 2.2.1 Simulation Approach; 2.2.2 Modeling Equations; 2.3 Data Center Description; 2.4 Results and Discussion; 2.4.1 Experimental; 2.4.2 Simulations Results; 2.4.2.1 Data Center Room and Rack Thermal Maps; 2.4.2.2 Static Pressure Map; 2.4.2.3 Air Flow Paths; 2.5 CRAC Performance; 2.6 Conclusions and Recommendations; Nomenclature; References; 3 Natural Convection Heat Transfer in the Partitioned Attic Space; 3.1 Introduction; 3.2 Problem Formulation; 3.3 Numerical Approach and Validation; 3.4 Results and Discussions
  • 3.4.1 Development of Coupled Thermal Boundary Layer3.4.2 Effect of Geometry Configuration; 3.4.3 Effect of Rayleigh Number; 3.5 Conclusions; References; 4 Application of Nanofluid in Heat Exchangers for Energy Savings; 4.1 Introduction; 4.2 Types of Nanoparticles and Nanofluid Preparation; 4.3 Application of Nanofluid in Heat Exchangers; 4.4 Physical Model and Boundary Values; 4.5 Governing Equations; 4.6 Thermal and Fluid Dynamic Analysis; 4.7 Thermophysical Properties of Nanofluid; 4.7.1 Thermal Conductivity; 4.7.2 Dynamic Viscosity; 4.7.3 Density; 4.7.4 Specific Heat; 4.8 Numerical Method
  • 4.9 Code Validation4.10 Grid Independence Test; 4.11 Results and Discussions; 4.11.1 Heat Transfer Coefficient for Different Volume Fraction of Nanofluid; 4.11.2 Heat Transfer Coefficient for Different Nanofluids at the Same Volume Fraction; 4.11.3 Pumping Power; 4.12 Case Study for a Typical Heat Exchanger; 4.13 Conclusions; Nomenclature; Greek symbols; Subscripts; Dimensionless parameter; References; 5 Effects of Perforation Geometry on the Heat Transfer Performance of Extended Surfaces; 5.1 Introduction; 5.2 Problem Description; 5.3 Governing Equations; 5.4 Numerical Model Formulation
  • 5.4.1 Geometric Configuration and Computational Procedure5.4.2 Validation of the Numerical Simulation; 5.5 Results and Discussions; 5.5.1 Nusselt Number Variation with the Reynolds Number; 5.5.2 Effects of Drag Force; 5.5.3 Heat Removal Rate at Various Reynolds Numbers; 5.6 Conclusions; References; 6 Numerical Study of Flow Through a Reducer for Scale Growth Suppression; 6.1 Introduction; 6.2 The Bayer Process; 6.2.1 Bayer Process Scaling; 6.3 Fundamentals of Scaling; 6.4 Particle Deposition Mechanisms; 6.5 Fluid Dynamics Analysis in Scale Growth and Suppression; 6.6 Target Model