Cargando…

Thermofluid modeling for energy efficiency applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Khan, M. Masud Khan (Editor ), Hassan, Nur M. S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK : Academic Press, [2016]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn926045939
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 151022s2016 enka ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d ILU  |d OCLCF  |d AU@  |d OCLCA  |d EBLCP  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 925469226  |a 929521264 
020 |z 9780128023976 
020 |a 9780128025895 
020 |a 0128025891 
029 1 |a AU@  |b 000055511455 
029 1 |a GBVCP  |b 897159322 
035 |a (OCoLC)926045939  |z (OCoLC)925469226  |z (OCoLC)929521264 
037 |a CL0500000662  |b Safari Books Online 
050 4 |a TA357 
082 0 4 |a 620.1/064  |2 23 
049 |a UAMI 
245 0 0 |a Thermofluid modeling for energy efficiency applications /  |c edited by M. Masud K. Khan, Nur M.S. Hassan. 
264 1 |a London, UK :  |b Academic Press,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 |a Description based on online resource; title from title page (Safari, viewed October 19, 2015). 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Thermofluid Modeling for Energy Efficiency Applications; Copyright Page; Contents; List of Contributors; Preface; 1 Performance Evaluation of Hybrid Earth Pipe Cooling with Horizontal Piping System; 1.1 Introduction; 1.2 Earth Pipe Cooling Technology; 1.3 Green Roof System; 1.4 Experimental Design and Measurement; 1.5 Model Description; 1.5.1 Modeling Equation; 1.5.2 Geometry of the Model; 1.5.3 Mesh Generation; 1.5.4 Solver Approach; 1.6 Results and Discussion; 1.7 Conclusion; Acknowledgments; References; 2 Thermal Efficiency Modeling in a Subtropical Data Center 
505 8 |a 2.1 Introduction2.2 CFD Modeling of Data Center; 2.2.1 Simulation Approach; 2.2.2 Modeling Equations; 2.3 Data Center Description; 2.4 Results and Discussion; 2.4.1 Experimental; 2.4.2 Simulations Results; 2.4.2.1 Data Center Room and Rack Thermal Maps; 2.4.2.2 Static Pressure Map; 2.4.2.3 Air Flow Paths; 2.5 CRAC Performance; 2.6 Conclusions and Recommendations; Nomenclature; References; 3 Natural Convection Heat Transfer in the Partitioned Attic Space; 3.1 Introduction; 3.2 Problem Formulation; 3.3 Numerical Approach and Validation; 3.4 Results and Discussions 
505 8 |a 3.4.1 Development of Coupled Thermal Boundary Layer3.4.2 Effect of Geometry Configuration; 3.4.3 Effect of Rayleigh Number; 3.5 Conclusions; References; 4 Application of Nanofluid in Heat Exchangers for Energy Savings; 4.1 Introduction; 4.2 Types of Nanoparticles and Nanofluid Preparation; 4.3 Application of Nanofluid in Heat Exchangers; 4.4 Physical Model and Boundary Values; 4.5 Governing Equations; 4.6 Thermal and Fluid Dynamic Analysis; 4.7 Thermophysical Properties of Nanofluid; 4.7.1 Thermal Conductivity; 4.7.2 Dynamic Viscosity; 4.7.3 Density; 4.7.4 Specific Heat; 4.8 Numerical Method 
505 8 |a 4.9 Code Validation4.10 Grid Independence Test; 4.11 Results and Discussions; 4.11.1 Heat Transfer Coefficient for Different Volume Fraction of Nanofluid; 4.11.2 Heat Transfer Coefficient for Different Nanofluids at the Same Volume Fraction; 4.11.3 Pumping Power; 4.12 Case Study for a Typical Heat Exchanger; 4.13 Conclusions; Nomenclature; Greek symbols; Subscripts; Dimensionless parameter; References; 5 Effects of Perforation Geometry on the Heat Transfer Performance of Extended Surfaces; 5.1 Introduction; 5.2 Problem Description; 5.3 Governing Equations; 5.4 Numerical Model Formulation 
505 8 |a 5.4.1 Geometric Configuration and Computational Procedure5.4.2 Validation of the Numerical Simulation; 5.5 Results and Discussions; 5.5.1 Nusselt Number Variation with the Reynolds Number; 5.5.2 Effects of Drag Force; 5.5.3 Heat Removal Rate at Various Reynolds Numbers; 5.6 Conclusions; References; 6 Numerical Study of Flow Through a Reducer for Scale Growth Suppression; 6.1 Introduction; 6.2 The Bayer Process; 6.2.1 Bayer Process Scaling; 6.3 Fundamentals of Scaling; 6.4 Particle Deposition Mechanisms; 6.5 Fluid Dynamics Analysis in Scale Growth and Suppression; 6.6 Target Model 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Computational fluid dynamics. 
650 0 |a Sustainable engineering. 
650 6 |a Dynamique des fluides numérique. 
650 6 |a Ingénierie durable. 
650 7 |a Computational fluid dynamics  |2 fast 
650 7 |a Sustainable engineering  |2 fast 
700 1 |a Khan, M. Masud Khan,  |e editor. 
700 1 |a Hassan, Nur M. S.,  |e editor. 
776 0 8 |i Print version:  |a Khan, M.M.K  |t Thermofluid Modeling for Energy Efficiency Applications  |d : Elsevier Science,c2015  |z 9780128023976 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780128025895/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4003586 
994 |a 92  |b IZTAP