|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
OR_ocn922925648 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
151006s2015 nyu o 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d OCLCF
|d EBLCP
|d IDEBK
|d YDXCP
|d AZU
|d COO
|d DEBSZ
|d UMI
|d GW5XE
|d B24X7
|d IAO
|d JBG
|d IAD
|d IAS
|d ICN
|d SOI
|d ILO
|d DEBBG
|d IDB
|d VT2
|d UAB
|d Z5A
|d LIV
|d OCLCQ
|d MERUC
|d ESU
|d OCLCQ
|d IOG
|d OCLCO
|d U3W
|d REB
|d CEF
|d OCLCQ
|d OCLCO
|d INT
|d OCLCQ
|d OCLCO
|d WYU
|d UKMGB
|d OCLCQ
|d OCLCO
|d AU@
|d UKAHL
|d OCLCQ
|d AUD
|d OCLCO
|d DCT
|d ERF
|d OCLCQ
|d BRF
|d OCLCO
|d OCLCQ
|d OCL
|d OCLCQ
|
016 |
7 |
|
|a 019139830
|2 Uk
|
019 |
|
|
|a 923336201
|a 923557363
|a 932332849
|a 934650464
|a 966374353
|a 985053549
|a 1005753914
|a 1008951608
|a 1021258201
|a 1066630824
|a 1086509474
|a 1111066791
|a 1112560467
|a 1129377820
|a 1152996191
|a 1192340415
|a 1240519893
|
020 |
|
|
|a 9781484205297
|q (electronic bk.)
|
020 |
|
|
|a 1484205294
|q (electronic bk.)
|
020 |
|
|
|z 9781484205303
|
020 |
|
|
|z 1484205308
|
024 |
7 |
|
|a 10.1007/978-1-4842-0529-7
|2 doi
|
029 |
1 |
|
|a AU@
|b 000056994456
|
029 |
1 |
|
|a CHNEW
|b 000893559
|
029 |
1 |
|
|a CHVBK
|b 374527164
|
029 |
1 |
|
|a DEBBG
|b BV043626772
|
029 |
1 |
|
|a DEBBG
|b BV043967906
|
029 |
1 |
|
|a DEBSZ
|b 453692869
|
029 |
1 |
|
|a DEBSZ
|b 485783940
|
029 |
1 |
|
|a GBVCP
|b 882745484
|
029 |
1 |
|
|a UKMGB
|b 019139830
|
029 |
1 |
|
|a AU@
|b 000067106218
|
029 |
1 |
|
|a AU@
|b 000068984033
|
035 |
|
|
|a (OCoLC)922925648
|z (OCoLC)923336201
|z (OCoLC)923557363
|z (OCoLC)932332849
|z (OCoLC)934650464
|z (OCoLC)966374353
|z (OCoLC)985053549
|z (OCoLC)1005753914
|z (OCoLC)1008951608
|z (OCoLC)1021258201
|z (OCoLC)1066630824
|z (OCoLC)1086509474
|z (OCoLC)1111066791
|z (OCoLC)1112560467
|z (OCoLC)1129377820
|z (OCoLC)1152996191
|z (OCoLC)1192340415
|z (OCoLC)1240519893
|
037 |
|
|
|a 838268
|b MIL
|
050 |
|
4 |
|a HF5548.2
|
072 |
|
7 |
|a BUS
|x 082000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 041000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 042000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 085000
|2 bisacsh
|
072 |
|
7 |
|a UY
|2 bicssc
|
082 |
0 |
4 |
|a 658/.05
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Dunlop, Neil.
|
245 |
1 |
0 |
|a Beginning big data with Power BI and Excel 2013 /
|c Neil Dunlop.
|
264 |
|
1 |
|a [New York, NY] :
|b Apress,
|c [2015]
|
264 |
|
4 |
|c ©2015
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Expert's voice in big data
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Vendor-supplied metadata.
|
520 |
|
|
|a In Beginning Big Data with Power BI and Excel 2013, you will learn to solve business problems by tapping the power of Microsoft's Excel and Power BI to import data from NoSQL and SQL databases and other sources, create relational data models, and analyze business problems through sophisticated dashboards and data-driven maps. While Beginning Big Data with Power BI and Excel 2013 covers prominent tools such as Hadoop and the NoSQL databases, it recognizes that most small and medium-sized businesses don't have the Big Data processing needs of a Netflix, Target, or Facebook. Instead, it shows how to import data and use the self-service analytics available in Excel with Power BI. As you'll see through the book's numerous case examples, these tools--which you already know how to use--can perform many of the same functions as the higher-end Apache tools many people believe are required to carry out in Big Data projects. Through instruction, insight, advice, and case studies, Beginning Big Data with Power BI and Excel 2013 will show you how to: Import and mash up data from web pages, SQL and NoSQL databases, the Azure Marketplace and other sources. Tap into the analytical power of PivotTables and PivotCharts and develop relational data models to track trends and make predictions based on a wide range of data. Understand basic statistics and use Excel with PowerBI to do sophisticated statistical analysis--including identifying trends and correlations. Use SQL within Excel to do sophisticated queries across multiple tables, including NoSQL databases. Create complex formulas to solve real-world business problems using Data Analysis Expressions (DAX).
|
505 |
0 |
|
|a At a Glance; Contents; About the Author; About the Technical Reviewer; Acknowledgments; Introduction; Chapter 1: Big Data; Big Data As the Fourth Factor of Production; Big Data As Natural Resource; Data As Middle Manager; Early Data Analysis; First Time Line; First Bar Chart and Time Series; Cholera Map; Modern Data Analytics; Google Flu Trends; Google Earth; Tracking Malaria; Big Data Cost Savings; Big Data and Governments; Predictive Policing; A Cost-Saving Success Story; Internet of Things or Industrial Internet; Cutting Energy Costs at MIT.
|
505 |
8 |
|
|a The Big Data Revolution and Health Care The Medicalized Smartphone; Improving Reliability of Industrial Equipment; Big Data and Agriculture; Cheap Storage; Personal Computers and the Cost of Storage; Review of File Sizes; Data Keeps Expanding; Relational Databases; Normalization; Database Software for Personal Computers; The Birth of Big Data and NoSQL; Hadoop Distributed File System (HDFS); Big Data; The Three V's; The Data Life Cycle; Apache Hadoop; MapReduce Algorithm; Hadoop Distributed File System (HDFS); Commercial Implementations of Hadoop; CAP Theorem; NoSQL.
|
505 |
8 |
|
|a Characteristics of NoSQL DataImplementations of NoSQL; Spark; Microsoft Self-Service BI; Summary; Chapter 2: Excel As Database and Data Aggregator; From Spreadsheet to Database; Interpreting File Extensions; Using Excel As a Database; Importing from Other Formats; Opening Text Files in Excel; Importing Data from XML; Importing XML with Attributes; Importing JSON Format; Using the Data Tab to Import Data; Importing Data from Tables on a Web Site; Data Wrangling and Data Scrubbing; Correcting Capitalization; Splitting Delimited Fields; Splitting Complex, Delimited Fields.
|
505 |
8 |
|
|a Removing Duplicates Input Validation; Working with Data Forms; Selecting Records; Summary; Chapter 3: Pivot Tables and Pivot Charts; Recommended Pivot Tables in Excel 2013; Defining a Pivot Table; Defining Questions; Creating a Pivot Table; Changing the Pivot Table; Creating a Breakdown of Sales by Salesperson for Each Day; Showing Sales by Month; Creating a Pivot Chart; Adjusting Subtotals and Grand Totals; Analyzing Sales by Day of Week; Creating a Pivot Chart of Sales by Day of Week; Using Slicers; Adding a Time Line; Importing Pivot Table Data from the Azure Marketplace.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
630 |
0 |
0 |
|a Microsoft Excel (Computer file)
|
630 |
0 |
0 |
|a Microsoft PowerPivot (Computer file)
|
630 |
0 |
7 |
|a Microsoft Excel (Computer file)
|2 fast
|0 (OCoLC)fst01366659
|
630 |
0 |
7 |
|a Microsoft PowerPivot (Computer file)
|2 fast
|0 (OCoLC)fst01915392
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Business
|x Data processing.
|
650 |
|
0 |
|a Computer science.
|
650 |
|
0 |
|a Management
|x Data processing.
|
650 |
|
0 |
|a Electronic data processing.
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
6 |
|a Gestion
|x Informatique.
|
650 |
|
6 |
|a Informatique.
|
650 |
|
7 |
|a computer science.
|2 aat
|
650 |
|
7 |
|a data processing.
|2 aat
|
650 |
|
7 |
|a Computer networking & communications.
|2 bicssc
|
650 |
|
7 |
|a Microsoft programming.
|2 bicssc
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Industrial Management.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Management.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Management Science.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Organizational Behavior.
|2 bisacsh
|
650 |
|
7 |
|a Management
|x Data processing.
|2 fast
|0 (OCoLC)fst01007162
|
650 |
|
7 |
|a Electronic data processing.
|2 fast
|0 (OCoLC)fst00906956
|
650 |
|
7 |
|a Big data.
|2 fast
|0 (OCoLC)fst01892965
|
650 |
|
7 |
|a Business
|x Data processing.
|2 fast
|0 (OCoLC)fst00842293
|
650 |
|
7 |
|a Computer science.
|2 fast
|0 (OCoLC)fst00872451
|
776 |
0 |
8 |
|i Print version:
|a Dunlop, Neil.
|t Beginning big data with Power BI and Excel 2013.
|d [New York, NY] : Apress, [2015]
|z 1484205308
|z 9781484205303
|w (OCoLC)921191514
|
830 |
|
0 |
|a Expert's voice in big data.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484205297/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH31716290
|
938 |
|
|
|a Books 24x7
|b B247
|n bks00101457
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4178051
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1076514
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis32812781
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12635103
|
994 |
|
|
|a 92
|b IZTAP
|