Cargando…

Mastering probabilistic graphical models using Python : master probablistic graphical models by learning through real-world problems and illustrative code examples in Python /

If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ankan, Ankur (Autor), Panda, Abinash (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2015.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn922580777
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 150930s2015 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d DEBBG  |d DEBSZ  |d NRC  |d VT2  |d CEF  |d UAB  |d VLY  |d OCLCO  |d OCLCQ 
020 |z 9781784394684 
020 |a 9781784395216 
020 |a 1784395218 
020 |a 1784394688 
020 |a 9781784394684 
029 1 |a DEBBG  |b BV043020387 
029 1 |a DEBSZ  |b 455699593 
029 1 |a GBVCP  |b 882744704 
035 |a (OCoLC)922580777 
037 |a CL0500000653  |b Safari Books Online 
050 4 |a QA279 
082 0 4 |a 519.5  |2 23 
049 |a UAMI 
100 1 |a Ankan, Ankur,  |e author. 
245 1 0 |a Mastering probabilistic graphical models using Python :  |b master probablistic graphical models by learning through real-world problems and illustrative code examples in Python /  |c Ankur Ankan, Abinash Panda. 
246 3 0 |a Master probablistic graphical models by learning through real-world problems and illustrative code examples in Python 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2015. 
300 |a 1 online resource (1 volume) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Community experience distilled 
588 |a Description based on online resource; title from cover page (Safari, viewed September 28, 2015). 
500 |a Includes index. 
505 0 |a Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Bayesian Network Fundamentals; Probability theory; Random variable; Independence and conditional independence; Installing tools; IPython; pgmpy; Representing independencies using pgmpy; Representing joint probability distributions using pgmpy; Conditional probability distribution; Representing CPDs using pgmpy; Graph theory; Nodes and edges; Walk, paths, and trails; Bayesian models; Representation; Factorization of a distribution over a network 
505 8 |a Implementing Bayesian networks using pgmpyBayesian model representation; Reasoning pattern in Bayesian networks; D-separation; Direct connection; Indirect connection; Relating graphs and distributions; IMAP; IMAP to factorization; CPD representations; Deterministic CPDs; Context-specific CPDs; Tree CPD; Rule CPD; Summary; Chapter 2: Markov Network Fundamentals; Introducing the Markov network; Parameterizing a Markov network -- factor; Factor operations; Gibbs distributions and Markov networks; The factor graph; Independencies in Markov networks; Constructing graphs from distributions 
505 8 |a Bayesian networks and Markov networksConverting Bayesian models into Markov models; Converting Markov models into Bayesian models; Chordal graphs; Summary; Chapter 3: Inference -- Asking Questions to Models; Inference; Complexity of inference; Variable elimination; Analysis of variable elimination; Finding elimination ordering; Using the chordal graph property of induced graphs; Minimum fill/size/weight/search; Belief propagation; Clique tree; Constructing a clique tree; Message passing; Clique tree calibration; Message passing with division; Factor division 
505 8 |a Querying variables that are not in the same clusterMAP using variable elimination; Factor maximization; MAP using belief propagation; Finding the most probable assignment; Predictions from the model using pgmpy; A comparison of variable elimination and belief propagation; Summary; Chapter 4: Approximate Inference; The optimization problem; The energy function; Exact inference as an optimization; The propagation based approximation algorithm; Cluster graph belief propagation; Constructing cluster graphs; Pairwise Markov networks; Bethe cluster graph; Propagation with approximate messages 
505 8 |a Message creationInference with approximate messages; Sum-product expectation propagation; Belief update propagation; Sampling-based approximate methods; Forward sampling; Conditional probability distribution; Likelihood weighting and importance sampling; Importance sampling; Importance sampling in Bayesian networks; Computing marginal probabilities; Ratio likelihood weighting; Normalized likelihood weighting; Markov chain Monte Carlo methods; Gibbs sampling; Markov chains; The multiple transitioning model; Using a Markov chain; Collapsed particles; Collapsed importance sampling; Summary 
505 8 |a Chapter 5: Model Learning -- Parameter Estimation in Bayesian Networks 
520 |a If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Graphical modeling (Statistics) 
650 0 |a Python (Computer program language) 
650 6 |a Modèles graphiques (Statistique) 
650 6 |a Python (Langage de programmation) 
650 7 |a Graphical modeling (Statistics)  |2 fast  |0 (OCoLC)fst00946659 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Panda, Abinash,  |e author. 
830 0 |a Community experience distilled. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781784394684/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP