Cargando…

Data Analysis in the Cloud : Models, Techniques and Applications /

Data Analysis in the Cloud introduces and discusses models, methods, techniques, and systems to analyze the large number of digital data sources available on the Internet using the computing and storage facilities of the cloud. Coverage includes scalable data mining and knowledge discovery technique...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Talia, Domenico (Autor), Trunfio, Paolo (Autor), Marozzo, Fabrizio (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier Ltd., [2016]
Colección:Computer science reviews and trends.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn921301942
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 150917s2016 ne ob 000 0 eng d
010 |a  2017289023 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDXCP  |d OPELS  |d UMI  |d TEFOD  |d OCLCF  |d IDEBK  |d EBLCP  |d NLE  |d COO  |d GGVRL  |d DEBSZ  |d LOA  |d VGM  |d OCLCQ  |d VT2  |d U3W  |d D6H  |d CEF  |d EZ9  |d OCLCQ  |d WYU  |d LQU  |d OCLCQ  |d MM9  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 922704626  |a 926045941  |a 929521561  |a 1066600477  |a 1103255244  |a 1105186310  |a 1105568395  |a 1129373663 
020 |a 9780128029145  |q (electronic bk.) 
020 |a 0128029145  |q (electronic bk.) 
020 |z 9780128028810 
020 |z 0128028815 
029 1 |a AU@  |b 000060935079 
029 1 |a CHNEW  |b 001013126 
029 1 |a DEBSZ  |b 451529340 
029 1 |a DEBSZ  |b 461171864 
029 1 |a GBVCP  |b 856732516 
029 1 |a GBVCP  |b 897159365 
029 1 |a AU@  |b 000055527763 
035 |a (OCoLC)921301942  |z (OCoLC)922704626  |z (OCoLC)926045941  |z (OCoLC)929521561  |z (OCoLC)1066600477  |z (OCoLC)1103255244  |z (OCoLC)1105186310  |z (OCoLC)1105568395  |z (OCoLC)1129373663 
037 |a CL0500000662  |b Safari Books Online 
037 |a 3E09D927-54E8-44C3-AD57-B17FDAA11C2F  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.Q36 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
049 |a UAMI 
100 1 |a Talia, Domenico,  |e author. 
245 1 0 |a Data Analysis in the Cloud :  |b Models, Techniques and Applications /  |c Domenico Talia, Paolo Trunfio, Fabrizio Marozzo. 
264 1 |a Amsterdam, Netherlands :  |b Elsevier Ltd.,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer Science Reviews and Trends 
588 0 |a Vendor-supplied metadata. 
504 |a Includes bibliographical references. 
520 |a Data Analysis in the Cloud introduces and discusses models, methods, techniques, and systems to analyze the large number of digital data sources available on the Internet using the computing and storage facilities of the cloud. Coverage includes scalable data mining and knowledge discovery techniques together with cloud computing concepts, models, and systems. Specific sections focus on map-reduce and NoSQL models. The book also includes techniques for conducting high-performance distributed analysis of large data on clouds. Finally, the book examines research trends such as Big Data pervasive computing, data-intensive exascale computing, and massive social network analysis. 
505 0 |a Cover; Title Page; Copyright Page; Dedication; Contents; Preface; Chapter 1 -- Introduction to Data Mining; 1.1 -- Data mining concepts ; 1.1.1 -- Classification ; 1.1.1.1 -- Decision Trees ; 1.1.1.2 -- Classification with kNN ; 1.1.2 -- Clustering ; 1.1.2.1 -- Bayesian Classification ; 1.1.2.2 -- The K-Means Algorithm ; 1.1.3 -- Association Rules ; 1.2 -- Parallel and distributed data mining ; 1.2.1 -- Parallel Classification ; 1.2.2 -- Parallel Clustering ; 1.2.3 -- Parallelism in Association Rules ; 1.2.4 -- Distributed Data Mining ; 1.2.4.1 -- Meta-Learning. 
505 8 |a 1.2.4.2 -- Collective Data Mining 1.2.4.3 -- Ensemble Learning ; 1.3 -- Summary ; References; Chapter 2 -- Introduction to Cloud Computing; 2.1 -- Cloud computing: definition, models, and architectures ; 2.1.1 -- Service Models ; 2.1.2 -- Deployment Models ; 2.1.3 -- Cloud Environments ; 2.1.3.1 -- Microsoft Azure ; 2.1.3.2 -- Amazon Web Services ; 2.1.3.3 -- OpenNebula ; 2.1.3.4 -- OpenStack ; 2.2 -- Cloud computing systems for data-intensive applications ; 2.2.1 -- Functional Requirements ; 2.2.1.1 -- Resource Management ; 2.2.1.2 -- Application Management. 
505 8 |a 2.2.2 -- Nonfunctional Requirements 2.2.2.1 -- User Requirements ; 2.2.2.2 -- Architecture Requirements ; 2.2.2.3 -- Infrastructure Requirements ; 2.2.3 -- Cloud Models for Distributed Data Analysis ; 2.3 -- Summary ; References ; Chapter 3 -- Models and Techniques for Cloud-Based Data Analysis; 3.1 -- MapReduce for data analysis ; 3.1.1 -- MapReduce Paradigm ; 3.1.2 -- MapReduce Frameworks ; 3.1.3 -- MapReduce Algorithms and Applications ; 3.2 -- Data analysis workflows ; 3.2.1 -- Workflow Programming ; 3.2.2 -- Workflow Management Systems ; 3.2.3 -- Workflow Management Systems for Clouds. 
505 8 |a 3.3 -- NoSQL models for data analytics 3.3.1 -- Key Features of NoSQL ; 3.3.2 -- Classification of NoSQL Databases ; 3.3.3 -- NoSQL Systems ; 3.3.3.1 -- Dynamo ; 3.3.3.2 -- MongoDB ; 3.3.3.3 -- Bigtable ; 3.3.4 -- Use Cases ; 3.4 -- Summary ; References ; Chapter 4 -- Designing and Supporting Scalable Data Analytics ; 4.1 -- Data analysis systems for clouds ; 4.1.1 -- Pegasus ; 4.1.2 -- Swift ; 4.1.3 -- Hunk ; 4.1.4 -- Sector/Sphere ; 4.1.5 -- BigML ; 4.1.6 -- Kognitio Analytical Platform ; 4.1.7 -- Mahout ; 4.1.8 -- Spark ; 4.1.9 -- Microsoft Azure Machine Learning ; 4.1.10 -- ClowdFlows. 
505 8 |a 4.2 -- How to design a scalable data analysis framework in clouds 4.2.1 -- Architecture and Execution Mechanisms ; 4.2.2 -- Implementation on Microsoft Azure ; 4.3 -- Programming workflow-based data analysis ; 4.3.1 -- VL4Cloud ; 4.3.2 -- JS4Cloud ; 4.3.3 -- Workflow Patterns in DMCF ; 4.3.3.1 -- Single Task ; 4.3.3.2 -- Pipeline ; 4.3.3.3 -- Data Partitioning ; 4.3.3.4 -- Data Aggregation ; 4.3.3.5 -- Parameter Sweeping ; 4.3.3.6 -- Input Sweeping ; 4.3.3.7 -- Tool Sweeping ; 4.3.3.8 -- Combination of Sweeping Patterns ; 4.4 -- Data analysis case studies. 
505 8 |a 4.4.1 -- Trajectory Mining Workflow Using VL4Cloud. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Quantitative research. 
650 0 |a Data mining. 
650 0 |a Cloud computing. 
650 6 |a Recherche quantitative. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Infonuagique. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Cloud computing  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Quantitative research  |2 fast 
700 1 |a Trunfio, Paolo,  |e author. 
700 1 |a Marozzo, Fabrizio,  |e author. 
776 0 8 |i Print version:  |a Talia, Domenico.  |t Data Analysis in the Cloud : Models, Techniques and Applications.  |d : Elsevier Science, ©2015  |z 9780128028810 
830 0 |a Computer science reviews and trends. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780128029145/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4003790 
938 |a EBSCOhost  |b EBSC  |n 1065508 
938 |a Cengage Learning  |b GVRL  |n GVRL6QDB 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis32444821 
938 |a YBP Library Services  |b YANK  |n 12620783 
994 |a 92  |b IZTAP