Cargando…

Bent functions : results and applications to cryptography /

Bent Functions: Results and Applications to Cryptography offers a unique survey of the objects of discrete mathematics known as Boolean bent functions. As these maximal, nonlinear Boolean functions and their generalizations have many theoretical and practical applications in combinatorics, coding th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tokareva, Natalia (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, [2015]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn919201561
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 150826t20152015enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDXCP  |d CDX  |d OPELS  |d IDEBK  |d OCLCF  |d EBLCP  |d B24X7  |d COO  |d D6H  |d DEBSZ  |d MCW  |d OCLCA  |d LIV  |d OCLCQ  |d MERUC  |d OCLCQ  |d WRM  |d U3W  |d CEF  |d AU@  |d OCLCQ  |d WYU  |d CUY  |d LOA  |d ZCU  |d ICG  |d K6U  |d COCUF  |d VT2  |d DKC  |d OCLCQ  |d BRF  |d OCLCO  |d OCLCQ  |d INARC 
019 |a 919297114  |a 923546855  |a 929142768  |a 1066653364  |a 1088983040  |a 1228531868  |a 1391163327 
020 |a 9780128025550  |q (electronic bk.) 
020 |a 0128025557  |q (electronic bk.) 
020 |z 9780128023181 
020 |z 012802318X 
029 1 |a AU@  |b 000055409571 
029 1 |a CHNEW  |b 001013081 
029 1 |a DEBBG  |b BV043216503 
029 1 |a DEBBG  |b BV043622929 
029 1 |a DEBSZ  |b 451528697 
029 1 |a DEBSZ  |b 48237621X 
029 1 |a GBVCP  |b 856732303 
029 1 |a NLGGC  |b 400914093 
035 |a (OCoLC)919201561  |z (OCoLC)919297114  |z (OCoLC)923546855  |z (OCoLC)929142768  |z (OCoLC)1066653364  |z (OCoLC)1088983040  |z (OCoLC)1228531868  |z (OCoLC)1391163327 
037 |a 825603  |b MIL 
050 4 |a QA341 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.3/3  |2 23 
049 |a UAMI 
100 1 |a Tokareva, Natalia,  |e author. 
245 1 0 |a Bent functions :  |b results and applications to cryptography /  |c by Natalia Tokareva. 
264 1 |a London :  |b Academic Press,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (Ebsco, viewed August 27 2015). 
504 |a Includes bibliographical references and index. 
520 |a Bent Functions: Results and Applications to Cryptography offers a unique survey of the objects of discrete mathematics known as Boolean bent functions. As these maximal, nonlinear Boolean functions and their generalizations have many theoretical and practical applications in combinatorics, coding theory, and cryptography, the text provides a detailed survey of their main results, presenting a systematic overview of their generalizations and applications, and considering open problems in classification and systematization of bent functions. The text is appropriate for novices and advanced researchers, discussing proofs of several results, including the automorphism group of bent functions, the lower bound for the number of bent functions, and more. 
505 0 |a Front Cover -- Bent Functions: Results and Applications to Cryptography -- Copyright -- Contents -- Foreword -- Preface -- Notation -- Chapter 1: Boolean Functions -- Introduction -- 1.1 Definitions -- 1.2 Algebraic Normal Form -- 1.3 Boolean Cube and Hamming Distance -- 1.4 Extended Affinely Equivalent Functions -- 1.5 Walsh-Hadamard Transform -- 1.6 Finite Field and Boolean Functions -- 1.7 Trace Function -- 1.8 Polynomial Representation of a Boolean Function -- 1.9 Trace Representation of a Boolean Function -- 1.10 Monomial Boolean Functions 
505 8 |a Chapter 2: Bent Functions: An IntroductionIntroduction -- 2.1 Definition of a Nonlinearity -- 2.2 Nonlinearity of a Random Boolean Function -- 2.3 Definition of a Bent Function -- 2.4 If n Is Odd? -- 2.5 Open Problems -- 2.6 Surveys -- Chapter 3: History of Bent Functions -- Introduction -- 3.1 Oscar Rothaus -- 3.2 V.A. Eliseev and O.P. Stepchenkov -- 3.3 From the 1970s to the Present -- Chapter 4: Applications of Bent Functions -- Introduction -- 4.1 Cryptography: Linear Cryptanalysis and Boolean Functions -- 4.2 Cryptography: One Historical Example 
505 8 |a 4.3 Cryptography: Bent Functions in CAST4.4 Cryptography: Bent Functions in Grain -- 4.5 Cryptography: Bent Functions in HAVAL -- 4.6 Hadamard Matrices and Graphs -- 4.7 Links to Coding Theory -- 4.8 Bent Sequences -- 4.9 Mobile Networks, CDMA -- 4.10 Remarks -- Chapter 5: Properties of Bent Functions -- Introduction -- 5.1 Degree of a Bent Function -- 5.2 Affine Transformations of Bent Functions -- 5.3 Rank of a Bent Function -- 5.4 Dual Bent Functions -- 5.5 Other Properties -- Chapter 6: Equivalent Representations of Bent Functions -- Introduction 
505 8 |a 6.1 Hadamard Matrices6.2 Difference Sets -- 6.3 Designs -- 6.4 Linear Spreads -- 6.5 Sets of Subspaces -- 6.6 Strongly Regular Graphs -- 6.7 Bent Rectangles -- Chapter 7: Bent Functions with a Small Number of Variables -- Introduction -- 7.1 Two and Four Variables -- 7.2 Six Variables -- 7.3 Eight Variables -- 7.4 Ten and More Variables -- 7.5 Algorithms for Generation of Bent Functions -- 7.6 Concluding Remarks -- Chapter 8: Combinatorial Constructions of Bent Functions -- Introduction -- 8.1 Rothaus's Iterative Construction 
505 8 |a 8.2 Maiorana-McFarland Class8.3 Partial Spreads: PS+, PS- -- 8.4 Dillon's Bent Functions: PSap -- 8.5 Dobbertin's Construction -- 8.6 More Iterative Constructions -- 8.7 Minterm Iterative Constructions -- 8.8 Bent Iterative Functions: BI -- 8.9 Other Constructions -- Chapter 9: Algebraic Constructions of Bent Functions -- Introduction -- 9.1 An Algebraic Approach -- 9.2 Bent Exponents: General Properties -- 9.3 Gold Bent Functions -- 9.4 Dillon Exponent -- 9.5 Kasami Bent Functions -- 9.6 Canteaut-Leander Bent Functions (MF-1) 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Algebraic functions. 
650 0 |a Algebra, Boolean. 
650 0 |a Cryptography  |x Mathematics. 
650 6 |a Fonctions algébriques. 
650 6 |a Algèbre de Boole. 
650 6 |a Cryptographie  |x Mathématiques. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Algebra, Boolean.  |2 fast  |0 (OCoLC)fst00804924 
650 7 |a Algebraic functions.  |2 fast  |0 (OCoLC)fst00804933 
650 7 |a Cryptography  |x Mathematics.  |2 fast  |0 (OCoLC)fst00884558 
776 0 8 |i Print version:  |a Tokareva, Natalia.  |t Bent Functions : Results and Applications to Cryptography.  |d : Elsevier Science, ©2015  |z 9780128023181 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780128025550/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Books 24x7  |b B247  |n bks00091953 
938 |a Coutts Information Services  |b COUT  |n 32406134 
938 |a EBL - Ebook Library  |b EBLB  |n EBL2192079 
938 |a EBSCOhost  |b EBSC  |n 1056353 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis32406134 
938 |a YBP Library Services  |b YANK  |n 12587161 
938 |a Internet Archive  |b INAR  |n bentfunctionsres0000toka 
994 |a 92  |b IZTAP