Cargando…

Using every pixel to visualize big data /

"Visualizing patterns, relationships and anomalies in multi-sourced data is challenging when the number of records continues to grow exponentially. Many traditional methods of visualization for business intelligence and reporting aggregate the results into units which are easily computed and di...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bishop, Lynwood (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, [2014]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000Ii 4500
001 OR_ocn913535057
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 150709s2014 xx 038 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d UAB  |d ERF  |d OCLCO 
035 |a (OCoLC)913535057 
037 |a CL0500000613  |b Safari Books Online 
050 4 |a QA76.9.I52 
049 |a UAMI 
100 1 |a Bishop, Lynwood,  |e speaker. 
245 1 0 |a Using every pixel to visualize big data /  |c with Lynwood Bishop. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c [2014] 
300 |a 1 online resource (1 streaming video file (37 min., 36 sec.)) :  |b digital, sound, color. 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from title screen. 
500 |a Date of publication taken from resource description page. 
511 0 |a Presenter, Lynwood Bishop. 
520 |a "Visualizing patterns, relationships and anomalies in multi-sourced data is challenging when the number of records continues to grow exponentially. Many traditional methods of visualization for business intelligence and reporting aggregate the results into units which are easily computed and displayed. However, these visuals often fail to reveal the true patterns of the underlying data. If we used more pixels in our visualizations we could see millions of data representations on a screen. Computing a value for each pixel is a difficult challenge because it often requires whole set aggregates and table scans. There are so many pixels that it quickly becomes efficient to render these visuals on the server. This webcast covers: some favorite examples of big data visualizations, show you how rendering every pixel can be an effective tool for analysis tools, and architectural considerations necessary to create these visualizations for your organization."--Resource description page. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Information visualization. 
650 0 |a Big data. 
650 6 |a Visualisation de l'information. 
650 6 |a Données volumineuses. 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Information visualization.  |2 fast  |0 (OCoLC)fst00973185 
655 4 |a Electronic videos. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491917695/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP