Cargando…

Microsystems for Bioelectronics : Scaling and Performance Limits /

The advances in microsystems offer new opportunities and capabilities to develop systems for biomedical applications, such as diagnostics and therapy. There is a need for a comprehensive treatment of microsystems and in particular for an understanding of performance limits associated with the shrink...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhirnov, Victor V. (Autor), Cavin, Ralph K., III, 1939- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, UK ; Waltham, MA : William Andrew, [2015]
Edición:Second edition.
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover; Title Page; Copyright Page; Contents; Preface-Second Edition; Chapter 1
  • The nanomorphic cell: atomic-level limits of computing; List of Acronyms; 1.1
  • Introduction; 1.2
  • Electronic Scaling; 1.3
  • Nanomorphic Cell: Atomic Level Limits of Computing; 1.4
  • The Nanomorphic Cell vis-à-vis the Living Cell; 1.5
  • Cell Parameters: Mass, Size, and Energy; 1.6
  • Current Status of Technologies for Autonomous Microsystems; 1.6.1
  • Implantable and Ingestible Medical Devices; 1.6.2
  • Intelligent Integrated Sensor Systems; 1.7
  • Summary; 1.8
  • Appendix; References.
  • Chapter 2
  • Basic physics of ICTList of Acronyms; 2.1
  • Introduction; 2.2
  • A central concept: Energy barrier; 2.3
  • Physical origin of the barrier potential in materials systems; 2.4
  • Two-sided barrier; 2.4.1
  • Example: Electromechanical switch; 2.5
  • Model Case: An Electrical Capacitor; 2.6
  • Barrier transitions; 2.7
  • Quantum Confinement; 2.8
  • Quantum conductance; 2.9
  • Electron transport in the presence of barriers; 2.9.1
  • Over-barrier transport; 2.9.2
  • Tunneling transport; 2.10
  • Barriers in semiconductors; 2.10.1
  • Metal-semiconductor interfaces; 2.10.2
  • pn-junction; 2.11
  • Summary.
  • 3.5.1
  • Radioisotope Energy Sources3.5.2
  • Radioisotopic Energy Conversion; 3.5.3
  • Practical Miniature Radioisotope Energy Sources; 3.6
  • Remarks on Energy Harvesting; 3.6.1
  • Photovoltaics; 3.6.2
  • Radio Frequency (RF)/Microwave Energy Harvesting; 3.6.3
  • Kinetic Energy Harvesting; 3.6.4
  • Thermal Energy Harvesting; 3.7
  • Summary; 3.8
  • Appendix. A kinetic model to assess the limits of heat removal; References; Chapter 4
  • Fundamental limits for logic and memory; List of Acronyms; 4.1
  • Introduction; 4.2
  • Information and Information Processing; 4.3
  • Basic Physics of Binary Elements.
  • 4.3.1
  • Distinguishable States4.3.2
  • Energy Barrier Framework for the Operating Limits of Binary Switches; A. Limits on barrier height; B. Limits on Size; C. Limits on Speed; D. Combined Effect of Classic and Quantum Errors; 4.3.3
  • A summary of device scaling limits; 4.3.4
  • Charge-based Binary Logic Switch; 4.3.5
  • Charge-based Memory Element; DRAM; SRAM; Floating gate/flash memory; 4.4
  • System-level Analysis; 4.4.1
  • Tiling Considerations: Device density; 3D Tiling of Flash Memory; 4.4.2
  • Energy adjustment for system reliability; 4.4.3
  • Models for Connected Binary Switches.