Microsystems for Bioelectronics : Scaling and Performance Limits /
The advances in microsystems offer new opportunities and capabilities to develop systems for biomedical applications, such as diagnostics and therapy. There is a need for a comprehensive treatment of microsystems and in particular for an understanding of performance limits associated with the shrink...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford, UK ; Waltham, MA :
William Andrew,
[2015]
|
Edición: | Second edition. |
Colección: | Micro & nano technologies.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Cover; Title Page; Copyright Page; Contents; Preface-Second Edition; Chapter 1
- The nanomorphic cell: atomic-level limits of computing; List of Acronyms; 1.1
- Introduction; 1.2
- Electronic Scaling; 1.3
- Nanomorphic Cell: Atomic Level Limits of Computing; 1.4
- The Nanomorphic Cell vis-à-vis the Living Cell; 1.5
- Cell Parameters: Mass, Size, and Energy; 1.6
- Current Status of Technologies for Autonomous Microsystems; 1.6.1
- Implantable and Ingestible Medical Devices; 1.6.2
- Intelligent Integrated Sensor Systems; 1.7
- Summary; 1.8
- Appendix; References.
- Chapter 2
- Basic physics of ICTList of Acronyms; 2.1
- Introduction; 2.2
- A central concept: Energy barrier; 2.3
- Physical origin of the barrier potential in materials systems; 2.4
- Two-sided barrier; 2.4.1
- Example: Electromechanical switch; 2.5
- Model Case: An Electrical Capacitor; 2.6
- Barrier transitions; 2.7
- Quantum Confinement; 2.8
- Quantum conductance; 2.9
- Electron transport in the presence of barriers; 2.9.1
- Over-barrier transport; 2.9.2
- Tunneling transport; 2.10
- Barriers in semiconductors; 2.10.1
- Metal-semiconductor interfaces; 2.10.2
- pn-junction; 2.11
- Summary.
- 3.5.1
- Radioisotope Energy Sources3.5.2
- Radioisotopic Energy Conversion; 3.5.3
- Practical Miniature Radioisotope Energy Sources; 3.6
- Remarks on Energy Harvesting; 3.6.1
- Photovoltaics; 3.6.2
- Radio Frequency (RF)/Microwave Energy Harvesting; 3.6.3
- Kinetic Energy Harvesting; 3.6.4
- Thermal Energy Harvesting; 3.7
- Summary; 3.8
- Appendix. A kinetic model to assess the limits of heat removal; References; Chapter 4
- Fundamental limits for logic and memory; List of Acronyms; 4.1
- Introduction; 4.2
- Information and Information Processing; 4.3
- Basic Physics of Binary Elements.
- 4.3.1
- Distinguishable States4.3.2
- Energy Barrier Framework for the Operating Limits of Binary Switches; A. Limits on barrier height; B. Limits on Size; C. Limits on Speed; D. Combined Effect of Classic and Quantum Errors; 4.3.3
- A summary of device scaling limits; 4.3.4
- Charge-based Binary Logic Switch; 4.3.5
- Charge-based Memory Element; DRAM; SRAM; Floating gate/flash memory; 4.4
- System-level Analysis; 4.4.1
- Tiling Considerations: Device density; 3D Tiling of Flash Memory; 4.4.2
- Energy adjustment for system reliability; 4.4.3
- Models for Connected Binary Switches.