Cargando…

Bayesian data analysis /

"Preface This book is intended to have three roles and to serve three associated audiences: an introductory text on Bayesian inference starting from first principles, a graduate text on effective current approaches to Bayesian modeling and computation in statistics and related fields, and a han...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gelman, Andrew (Autor), Carlin, John B. (Autor), Stern, Hal Steven (Autor), Dunson, David B. (Autor), Vehtari, Aki (Autor), Rubin, Donald B. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton : CRC Press, [2014]
Edición:Third edition.
Colección:Texts in statistical science.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Part I:
  • Fundamentals of Bayesian inference.
  • Probability and inference
  • Single-parameter models
  • Introduction to multiparameter models
  • Asymptotics and connections to non-Bayesian approaches
  • Hierarchical models Part II: Fundamentals of Bayesian data analysis.
  • Model checking
  • Evaluating, comparing, and expanding models
  • Modeling accounting for data collection
  • Decision analysis Part III:
  • Advanced computation.
  • Introduction to Bayesian computation
  • Basics of Markov chain simulation
  • Computationally efficient Markov chain simulation
  • Modal and distributional approximations Part IV:
  • Regression models.
  • Introduction to regression models
  • Hierarchical linear models
  • Generalized linear models
  • Models for robust inference
  • Models for missing data Part V:
  • Nonlinear and nonparametric models.
  • Parametric nonlinear models
  • Basis function models
  • Gaussian process models
  • Finite mixture models
  • Dirichlet process models
  • A. Standard probability distributions
  • B. Outline of proofs of limit theorems
  • Computation in R and Stan.