Cargando…

Bayesian data analysis /

"Preface This book is intended to have three roles and to serve three associated audiences: an introductory text on Bayesian inference starting from first principles, a graduate text on effective current approaches to Bayesian modeling and computation in statistics and related fields, and a han...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gelman, Andrew (Autor), Carlin, John B. (Autor), Stern, Hal Steven (Autor), Dunson, David B. (Autor), Vehtari, Aki (Autor), Rubin, Donald B. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton : CRC Press, [2014]
Edición:Third edition.
Colección:Texts in statistical science.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_ocn909477393
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 150519t20142013flua ob 001 0 eng d
010 |a  2013039507 
040 |a YDXCP  |b eng  |e rda  |e pn  |c YDXCP  |d OCLCO  |d EBLCP  |d ORE  |d OCLCQ  |d COO  |d OCLCF  |d CRCPR  |d EZ9  |d OCLCQ  |d UMI  |d TOH  |d CUS  |d MERUC  |d OCLCQ  |d BUF  |d N$T  |d CEF  |d KSU  |d OCLCQ  |d INT  |d AU@  |d OCLCQ  |d WYU  |d C6I  |d UAB  |d VT2  |d LIP  |d OCLCQ  |d MM9  |d OCLCQ  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB194538  |2 bnb 
016 7 |a 015865024  |2 Uk 
019 |a 908077212  |a 961901605  |a 986525949  |a 988723045  |a 1028940462  |a 1030941296  |a 1035646562  |a 1036094155  |a 1056239961  |a 1058139646  |a 1058656627  |a 1060541224  |a 1066028405  |a 1066517791  |a 1103269653  |a 1129344637  |a 1152992837  |a 1172513503  |a 1192349207  |a 1240531786 
020 |a 1439898200  |q (electronic bk.) 
020 |a 9781439898208  |q (electronic bk.) 
020 |z 9781439840962 
020 |z 1439840962 
020 |z 9781439840955  |q (hardback) 
020 |z 1439840954  |q (hardback) 
024 8 |a 40023006895 
024 0 |a 7448428 
029 1 |a AU@  |b 000056093225 
029 1 |a AU@  |b 000059228787 
029 1 |a CHNEW  |b 000898979 
029 1 |a GBVCP  |b 1004859627 
035 |a (OCoLC)909477393  |z (OCoLC)908077212  |z (OCoLC)961901605  |z (OCoLC)986525949  |z (OCoLC)988723045  |z (OCoLC)1028940462  |z (OCoLC)1030941296  |z (OCoLC)1035646562  |z (OCoLC)1036094155  |z (OCoLC)1056239961  |z (OCoLC)1058139646  |z (OCoLC)1058656627  |z (OCoLC)1060541224  |z (OCoLC)1066028405  |z (OCoLC)1066517791  |z (OCoLC)1103269653  |z (OCoLC)1129344637  |z (OCoLC)1152992837  |z (OCoLC)1172513503  |z (OCoLC)1192349207  |z (OCoLC)1240531786 
037 |a 1438153  |b EBL 
050 4 |a QA279.5  |b .G45 2014 
060 4 |a QA 279.5 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.5/42  |2 23 
084 |a MAT029000  |2 bisacsh 
049 |a UAMI 
100 1 |a Gelman, Andrew,  |e author. 
245 1 0 |a Bayesian data analysis /  |c Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin. 
246 1 4 |a BDA3 
250 |a Third edition. 
264 1 |a Boca Raton :  |b CRC Press,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (xiv, 661 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC texts in statistical science 
520 |a "Preface This book is intended to have three roles and to serve three associated audiences: an introductory text on Bayesian inference starting from first principles, a graduate text on effective current approaches to Bayesian modeling and computation in statistics and related fields, and a handbook of Bayesian methods in applied statistics for general users of and researchers in applied statistics. Although introductory in its early sections, the book is definitely not elementary in the sense of a first text in statistics. The mathematics used in our book is basic probability and statistics, elementary calculus, and linear algebra. A review of probability notation is given in Chapter 1 along with a more detailed list of topics assumed to have been studied. The practical orientation of the book means that the reader's previous experience in probability, statistics, and linear algebra should ideally have included strong computational components. To write an introductory text alone would leave many readers with only a taste of the conceptual elements but no guidance for venturing into genuine practical applications, beyond those where Bayesian methods agree essentially with standard non-Bayesian analyses. On the other hand, we feel it would be a mistake to present the advanced methods without first introducing the basic concepts from our data-analytic perspective. Furthermore, due to the nature of applied statistics, a text on current Bayesian methodology would be incomplete without a variety of worked examples drawn from real applications. To avoid cluttering the main narrative, there are bibliographic notes at the end of each chapter and references at the end of the book"--  |c Provided by publisher. 
504 |a Includes bibliographical references (pages 607-639) and indexes. 
505 0 0 |g Part I: --  |t Fundamentals of Bayesian inference. --  |t Probability and inference --  |t Single-parameter models --  |t Introduction to multiparameter models --  |t Asymptotics and connections to non-Bayesian approaches --  |t Hierarchical models  |g Part II: Fundamentals of Bayesian data analysis. --  |t Model checking --  |t Evaluating, comparing, and expanding models --  |t Modeling accounting for data collection --  |t Decision analysis  |g Part III: --  |t Advanced computation. --  |t Introduction to Bayesian computation --  |t Basics of Markov chain simulation --  |t Computationally efficient Markov chain simulation --  |t Modal and distributional approximations  |g Part IV: --  |t Regression models. --  |t Introduction to regression models --  |t Hierarchical linear models --  |t Generalized linear models --  |t Models for robust inference --  |t Models for missing data  |g Part V: --  |t Nonlinear and nonparametric models. --  |t Parametric nonlinear models --  |t Basis function models --  |t Gaussian process models --  |t Finite mixture models --  |t Dirichlet process models --  |t A. Standard probability distributions --  |t B. Outline of proofs of limit theorems --  |t Computation in R and Stan. 
588 0 |a Print version record. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Bayesian statistical decision theory. 
650 6 |a Théorie de la décision bayésienne. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory  |2 fast 
700 1 |a Carlin, John B.,  |e author. 
700 1 |a Stern, Hal Steven,  |e author. 
700 1 |a Dunson, David B.,  |e author. 
700 1 |a Vehtari, Aki,  |e author. 
700 1 |a Rubin, Donald B.,  |e author. 
776 0 8 |i Print version:  |a Gelman, Andrew.  |t Bayesian data analysis.  |b Third edition.  |d Boca Raton : CRC Press, 2014  |z 9781439840955  |w (DLC) 2013039507  |w (OCoLC)859253474 
830 0 |a Texts in statistical science. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781439898222/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a CRC Press  |b CRCP  |n 9781439898208 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1438153 
938 |a EBSCOhost  |b EBSC  |n 1763244 
938 |a YBP Library Services  |b YANK  |n 12368315 
994 |a 92  |b IZTAP