Cargando…

Statistical reinforcement learning : modern machine learning approaches /

Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for deci...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sugiyama, Masashi, 1974- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, [2015]
Colección:Chapman & Hall/CRC machine learning & pattern recognition series.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn908635287
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 150508s2015 flua ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d DEBBG  |d EBLCP  |d CN3GA  |d E7B  |d YDXCP  |d CRCPR  |d COO  |d DEBSZ  |d OCLCF  |d IDB  |d NRC  |d MERUC  |d OCLCQ  |d VT2  |d CEF  |d OCLCQ  |d WYU  |d UKAHL  |d OCLCQ  |d IEUOL  |d OCLCO  |d OCL  |d OCLCQ  |d SFB 
019 |a 905983819  |a 1008947985  |a 1066586448  |a 1156379381  |a 1192342244  |a 1240520211  |a 1390933245  |a 1391465646 
020 |a 9781439856901 
020 |a 1439856907 
020 |a 9781466549319 
020 |a 1466549319 
020 |a 1439856893 
020 |a 9781439856895 
020 |z 9781439856895 
020 |a 9780429105364  |q (electronic bk.) 
020 |a 0429105363  |q (electronic bk.) 
024 8 |a 99978429971 
029 1 |a AU@  |b 000056090761 
029 1 |a AU@  |b 000060914160 
029 1 |a AU@  |b 000062348741 
029 1 |a AU@  |b 000065156715 
029 1 |a AU@  |b 000067074197 
029 1 |a CHBIS  |b 010876938 
029 1 |a CHVBK  |b 480377480 
029 1 |a DEBBG  |b BV042683333 
029 1 |a DEBBG  |b BV043611331 
029 1 |a DEBSZ  |b 434904481 
029 1 |a DEBSZ  |b 445549386 
029 1 |a DEBSZ  |b 446585386 
029 1 |a DEBSZ  |b 463020677 
029 1 |a GBVCP  |b 820671584 
029 1 |a GBVCP  |b 835874281 
029 1 |a ZWZ  |b 189426624 
035 |a (OCoLC)908635287  |z (OCoLC)905983819  |z (OCoLC)1008947985  |z (OCoLC)1066586448  |z (OCoLC)1156379381  |z (OCoLC)1192342244  |z (OCoLC)1240520211  |z (OCoLC)1390933245  |z (OCoLC)1391465646 
037 |a CL0500000589  |b Safari Books Online 
050 4 |a Q325.6 
082 0 4 |a 006.3/1  |a 006.31 
049 |a UAMI 
100 1 |a Sugiyama, Masashi,  |d 1974-  |e author. 
245 1 0 |a Statistical reinforcement learning :  |b modern machine learning approaches /  |c Masashi Sugiyama. 
246 3 0 |a Modern machine learning approaches 
264 1 |a Boca Raton, FL :  |b CRC Press,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource (xiii, 189 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC machine learning & pattern recognition series 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 183-189). 
505 0 |a Cover; Contents; Foreword; Preface; Author; Part I: Introduction; Chapter 1: Introduction to Reinforcement Learning; Part II: Model-Free Policy Iteration; Chapter 2: Policy Iteration with Value Function Approximation; Chapter 3: Basis Design for Value Function Approximation; Chapter 4: Sample Reuse in Policy Iteration; Chapter 5: Active Learning in Policy Iteration; Chapter 6: Robust Policy Iteration; Part III: Model-Free Policy Search; Chapter 7: Direct Policy Search by Gradient Ascent; Chapter 8: Direct Policy Search by Expectation-Maximization; Chapter 9: Policy-Prior Search. 
505 8 |a Part IV: Model-Based Reinforcement LearningChapter 10: Transition Model Estimation; Chapter 11: Dimensionality Reduction for Transition Model Estimation; References. 
520 |a Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data. Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from th. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Reinforcement learning. 
650 0 |a Machine learning  |x Mathematical models. 
650 6 |a Apprentissage par renforcement (Intelligence artificielle) 
650 6 |a Apprentissage automatique  |x Modèles mathématiques. 
650 7 |a Machine learning  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01004800 
650 7 |a Reinforcement learning.  |2 fast  |0 (OCoLC)fst01732553 
655 2 |a Statistics 
655 7 |a Statistics.  |2 fast  |0 (OCoLC)fst01423727 
655 7 |a Statistics.  |2 lcgft 
655 7 |a Statistiques.  |2 rvmgf 
776 0 8 |a Sugiyama, Masashi, 1974-  |t Statistical reinforcement learning.  |d Boca Raton, Florida : Chapman & Hall/CRC, 2013  |z 9781439856895  |w (OCoLC)859182486 
830 0 |a Chapman & Hall/CRC machine learning & pattern recognition series. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781439856895/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27196341 
938 |a CRC Press  |b CRCP  |n CAH0KE12645PDF 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1759550 
938 |a ebrary  |b EBRY  |n ebr11032989 
938 |a YBP Library Services  |b YANK  |n 12015257 
994 |a 92  |b IZTAP