Cargando…

Statistical reinforcement learning : modern machine learning approaches /

Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for deci...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sugiyama, Masashi, 1974- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, [2015]
Colección:Chapman & Hall/CRC machine learning & pattern recognition series.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Descripción
Sumario:Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data. Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from th.
Descripción Física:1 online resource (xiii, 189 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 183-189).
ISBN:9781439856901
1439856907
9781466549319
1466549319
1439856893
9781439856895
9780429105364
0429105363