Cargando…

Galois theory /

Extensions Solving Equations of Degree Four or Less Finite Fields Structure of Finite Fields The Multiplicative Group Application to Solitaire Regular Polygons What Euclid Knew Which Constructions Are Possible Regular Polygons Fermat Numbers How to Draw a Regular 17-gon Circle Division Genuine Radic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stewart, Ian, 1945- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, [2015]
Edición:Fourth edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Classical algebra
  • Fundamental theorem of algebra
  • Factorisation of polynomials
  • Field extensions
  • Simple extensions
  • Degree of an extension
  • Ruler-and-compass constructions
  • Idea behind Galois theory
  • Normality and separability
  • Counting principles
  • Field automorphisms
  • Galois correspondence
  • Worked example
  • Solubility and simplicity
  • Solution by radicals
  • Abstract rings and fields
  • Abstract field extensions
  • General polynomial equation
  • Finite fields
  • Regular polygons
  • Circle division
  • Calculating Galois groups
  • Algebraically closed fields
  • Transcendental numbers
  • What did Galois do or know?