Cargando…

Galois theory /

Extensions Solving Equations of Degree Four or Less Finite Fields Structure of Finite Fields The Multiplicative Group Application to Solitaire Regular Polygons What Euclid Knew Which Constructions Are Possible Regular Polygons Fermat Numbers How to Draw a Regular 17-gon Circle Division Genuine Radic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stewart, Ian, 1945- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, [2015]
Edición:Fourth edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn907663196
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 150419t20152015flua ob 000 0 eng d
040 |a CN3GA  |b eng  |e rda  |e pn  |c CN3GA  |d OCLCO  |d YDXCP  |d DEBSZ  |d EBLCP  |d OCLCQ  |d OCLCF  |d OSU  |d CRCPR  |d IDB  |d LIP  |d OTZ  |d MERUC  |d MMU  |d OCLCO  |d MUU  |d N$T  |d UUM  |d KSU  |d UKMGB  |d INT  |d AU@  |d OCLCQ  |d CUS  |d UKAHL  |d OCLCQ  |d UMI  |d UKQUB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 908080114  |a 964931010  |a 1030941362  |a 1190904896  |a 1258618950 
020 |a 9781482245837  |q (electronic bk.) 
020 |a 1482245833  |q (electronic bk.) 
020 |a 9780429172250 
020 |a 0429172257 
020 |z 9781482245820  |q (paperback) 
020 |z 1482245825  |q (paperback) 
020 |z 9781138401709 
029 1 |a AU@  |b 000055512974 
029 1 |a AU@  |b 000062346467 
029 1 |a CHBIS  |b 010608850 
029 1 |a CHVBK  |b 358213266 
029 1 |a DEBSZ  |b 433526238 
029 1 |a GBVCP  |b 821732595 
035 |a (OCoLC)907663196  |z (OCoLC)908080114  |z (OCoLC)964931010  |z (OCoLC)1030941362  |z (OCoLC)1190904896  |z (OCoLC)1258618950 
037 |a CL0501000137  |b Safari Books Online 
050 4 |a QA214 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.3  |2 23 
049 |a UAMI 
100 1 |a Stewart, Ian,  |d 1945-  |e author. 
245 1 0 |a Galois theory /  |c Ian Stewart, University of Warwick, Coventry, UK. 
250 |a Fourth edition. 
264 1 |a Boca Raton, FL :  |b CRC Press,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource (xxii, 314 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a "A Chapman & Hall book." 
500 |a Revised edition of: Galois theory / Ian Stewart. 3rd ed. ©2004. 
504 |a Includes bibliographical references. 
505 0 |a Classical algebra -- Fundamental theorem of algebra -- Factorisation of polynomials -- Field extensions -- Simple extensions -- Degree of an extension -- Ruler-and-compass constructions -- Idea behind Galois theory -- Normality and separability -- Counting principles -- Field automorphisms -- Galois correspondence -- Worked example -- Solubility and simplicity -- Solution by radicals -- Abstract rings and fields -- Abstract field extensions -- General polynomial equation -- Finite fields -- Regular polygons -- Circle division -- Calculating Galois groups -- Algebraically closed fields -- Transcendental numbers -- What did Galois do or know? 
588 0 |a Online resource; title from electronic title page (ProQuest Ebook Central, viewed March 14, 2018). 
520 8 |a Extensions Solving Equations of Degree Four or Less Finite Fields Structure of Finite Fields The Multiplicative Group Application to Solitaire Regular Polygons What Euclid Knew Which Constructions Are Possible Regular Polygons Fermat Numbers How to Draw a Regular 17-gon Circle Division Genuine Radicals Fifth Roots Revisited Vandermonde Revisited The General Case Cyclotomic Polynomials Galois Group of Q([zeta]) : Q The Technical Lemma More on Cyclotomic Polynomials Constructions Using a Trisector Calculating Galois Groups Transitive Subgroups Bare Hands on the Cubic The Discriminant General Algorithm for the Galois Group Algebraically Closed Fields Ordered Fields and Their Extensions Sylow's Theorem The Algebraic Proof Transcendental Numbers Irrationality Transcendence of e Transcendence of pi What Did Galois Do or Know List of the Relevant Material The First Memoir What Galois Proved What Is Galois up to Alternating Groups, Especially A5 Simple Groups Known to Galois Speculations about Proofs References Index. 
520 |a Classical Algebra Complex Numbers Subfields and Subrings of the Complex Numbers Solving Equations Solution by RadicalsThe Fundamental Theorem of Algebra Polynomials Fundamental Theorem of Algebra ImplicationsFactorisation of Polynomials The Euclidean Algorithm Irreducibility Gauss's Lemma Eisenstein's Criterion Reduction Modulo p Zeros of PolynomialsField Extensions Field Extensions Rational Expressions Simple ExtensionsSimple Extensions Algebraic and Transcendental Extensions The Minimal Polynomial Simple Algebraic Extensions Classifying Simple ExtensionsThe Degree of an ExtensionDefinition of the Degree The Tower LawRuler-and-Compass ConstructionsApproximate Constructions and More General Instruments Constructions in C Specific Constructions Impossibility Proofs Construction from a Given Set of PointsThe Idea behind Galois Theory A First Look at Galois Theory Galois Groups According to Galois How to Use the Galois Group The Abstract Setting Polynomials and Extensions The Galois Correspondence Diet Galois Natural IrrationalitiesNormality and Separability Splitting Fields Normality SeparabilityCounting Principles Linear Independence of MonomorphismsField Automorphisms K-Monomorphisms Normal ClosuresThe Galois CorrespondenceThe Fundamental Theorem of Galois TheoryA Worked ExampleSolubility and Simplicity Soluble Groups Simple Groups Cauchy's TheoremSolution by Radicals Radical Extensions An Insoluble Quintic Other MethodsAbstract Rings and Fields Rings and Fields General Properties of Rings and Fields Polynomials over General Rings The Characteristic of a Field Integral Domains Abstract Field Extensions Minimal Polynomials Simple Algebraic Extensions . Splitting Fields Normality Separability Galois Theory for Abstract FieldsThe General Polynomial Equation Transcendence Degree Elementary Symmetric Polynomials The General Polynomial Cyclic. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Galois theory. 
650 6 |a Théorie de Galois. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Galois theory  |2 fast 
700 1 |i Preceded by:  |a Stewart, Ian,  |d 1945-  |t Galois theory.  |s 3rd ed.  |f ©2004. 
776 0 8 |i Print version:  |a Stewart, Ian, 1945-  |t Galois theory.  |b Fourth edition.  |d Boca Raton : CRC Press, Taylor & Francis Group, [2015]  |z 9781482245820  |w (DLC) 2015458404  |w (OCoLC)910515215 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781482245837/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27197714 
938 |a CRC Press  |b CRCP  |n 9781482245837 
938 |a EBSCOhost  |b EBSC  |n 1763641 
938 |a YBP Library Services  |b YANK  |n 12368849 
994 |a 92  |b IZTAP