A machine learning approach to phishing detection and defense /
Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Det...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Waltham, MA :
Syngress,
[2015]
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Cover; Title Page; Copyright Page; Contents; Abstract; List of Tables; List of figures; List of abbreviation; Chapter 1
- Introduction; 1.1
- Introduction; 1.2
- Problem background; 1.3
- Problem statement; 1.4
- Purpose of study; 1.5
- Project objectives; 1.6
- Scope of study; 1.7
- The significance of study; 1.8
- Organization of report; Chapter 2
- Literature Review; 2.1
- Introduction; 2.2
- Phishing; 2.3
- Existing anti-phishing approaches; 2.3.1
- Non-Content-Based Approaches; 2.3.2
- Content-Based Approaches; 2.3.3
- Visual Similarity-Based Approach.
- 2.3.4
- Character-Based Approach2.4
- Existing techniques; 2.4.1
- Attribute-Based Anti-Phishing Technique; 2.4.2
- Generic Algorithm-Based Anti-Phishing Technique; 2.4.3
- An Identity-Based Anti-Phishing Techniques; 2.5
- Design of classifiers; 2.5.1
- Hybrid System; 2.5.2
- Lookup System; 2.5.3
- Classifier System; 2.5.4
- Ensemble System ; 2.5.4.1
- Simple Majority Vote; 2.6
- Normalization; 2.7
- Related work; 2.8
- Summary; Chapter 3
- Research Methodology; 3.1
- Introduction; 3.2
- Research framework; 3.3
- Research design.
- 3.3.1
- Phase 1: Dataset Processing and Feature Extraction3.3.2
- Phase 2: Evaluation of Individual Classifier; 3.3.2.1
- Classification Background; 3.3.2.2
- Classifier Performance; 3.3.2.2.1
- C5.0 Algorithm; 3.3.2.2.2
- K-Nearest Neighbour; 3.3.2.2.3
- Support Vector Machine (SVM); 3.3.2.2.4
- Linear Regression; 3.3.3
- Phase 3a: Evaluation of Classifier Ensemble; 3.3.4
- Phase 3b: Comparison of Individual versus Ensemble Technique; 3.4
- Dataset; 3.4.1
- Phishtank; 3.5
- Summary; Chapter 4
- Feature Extraction; 4.1
- Introduction; 4.2
- Dataset processing.
- 4.2.1
- Feature Extraction4.2.2
- Extracted Features; 4.2.3
- Data Verification; 4.2.4
- Data Normalization; 4.3
- Dataset division; 4.4
- Summary; Chapter 5
- Implementation and Result; 5.1
- Introduction; 5.2
- An overview of the investigation; 5.2.1
- Experimental Setup; 5.3
- Training and testing model (baseline model); 5.4
- Ensemble design and voting scheme; 5.5
- Comparative study; 5.6
- Summary; Chapter 6
- Conclusions; 6.1
- Concluding remarks; 6.2
- Research contribution; 6.2.1
- Dataset Preprocessing Technique; 6.2.2
- Validation Technique.
- 6.2.3
- Design Ensemble Method6.3
- Research implication; 6.4
- Recommendations for future research; 6.5
- Closing note; References.