Cargando…

A machine learning approach to phishing detection and defense /

Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Det...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Akanbi, Oluwatobi Ayodeji (Autor), Amiri, Iraj Sadegh, 1977- (Autor), Fazeldehkordi, Elahe (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, MA : Syngress, [2015]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn900882966
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 150128s2015 maua ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d DEBBG  |d OCLCF  |d YDXCP  |d OCLCQ  |d SUE  |d CEF  |d OCLCQ  |d AU@  |d LOA  |d G3B  |d CNCEN  |d S8J  |d K6U  |d COCUF  |d CNNOR  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 899568790  |a 930870565 
020 |a 9780128029466 
020 |a 0128029463 
020 |z 9780128029275 
020 |z 0128029277 
029 1 |a CHBIS  |b 010438496 
029 1 |a CHVBK  |b 336336675 
029 1 |a DEBBG  |b BV042490971 
029 1 |a DEBSZ  |b 43484148X 
029 1 |a GBVCP  |b 882741268 
035 |a (OCoLC)900882966  |z (OCoLC)899568790  |z (OCoLC)930870565 
037 |a CL0500000540  |b Safari Books Online 
050 4 |a HV6773.15.P45 
082 0 4 |a 364.1633  |2 23 
049 |a UAMI 
100 1 |a Akanbi, Oluwatobi Ayodeji,  |e author. 
245 1 2 |a A machine learning approach to phishing detection and defense /  |c Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi. 
264 1 |a Waltham, MA :  |b Syngress,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from title page (Safari, viewed Janurary 21, 2014). 
505 0 |a Cover; Title Page; Copyright Page; Contents; Abstract; List of Tables; List of figures; List of abbreviation; Chapter 1 -- Introduction; 1.1 -- Introduction; 1.2 -- Problem background; 1.3 -- Problem statement; 1.4 -- Purpose of study; 1.5 -- Project objectives; 1.6 -- Scope of study; 1.7 -- The significance of study; 1.8 -- Organization of report; Chapter 2 -- Literature Review; 2.1 -- Introduction; 2.2 -- Phishing; 2.3 -- Existing anti-phishing approaches; 2.3.1 -- Non-Content-Based Approaches; 2.3.2 -- Content-Based Approaches; 2.3.3 -- Visual Similarity-Based Approach. 
505 8 |a 2.3.4 -- Character-Based Approach2.4 -- Existing techniques; 2.4.1 -- Attribute-Based Anti-Phishing Technique; 2.4.2 -- Generic Algorithm-Based Anti-Phishing Technique; 2.4.3 -- An Identity-Based Anti-Phishing Techniques; 2.5 -- Design of classifiers; 2.5.1 -- Hybrid System; 2.5.2 -- Lookup System; 2.5.3 -- Classifier System; 2.5.4 -- Ensemble System ; 2.5.4.1 -- Simple Majority Vote; 2.6 -- Normalization; 2.7 -- Related work; 2.8 -- Summary; Chapter 3 -- Research Methodology; 3.1 -- Introduction; 3.2 -- Research framework; 3.3 -- Research design. 
505 8 |a 3.3.1 -- Phase 1: Dataset Processing and Feature Extraction3.3.2 -- Phase 2: Evaluation of Individual Classifier; 3.3.2.1 -- Classification Background; 3.3.2.2 -- Classifier Performance; 3.3.2.2.1 -- C5.0 Algorithm; 3.3.2.2.2 -- K-Nearest Neighbour; 3.3.2.2.3 -- Support Vector Machine (SVM); 3.3.2.2.4 -- Linear Regression; 3.3.3 -- Phase 3a: Evaluation of Classifier Ensemble; 3.3.4 -- Phase 3b: Comparison of Individual versus Ensemble Technique; 3.4 -- Dataset; 3.4.1 -- Phishtank; 3.5 -- Summary; Chapter 4 -- Feature Extraction; 4.1 -- Introduction; 4.2 -- Dataset processing. 
505 8 |a 4.2.1 -- Feature Extraction4.2.2 -- Extracted Features; 4.2.3 -- Data Verification; 4.2.4 -- Data Normalization; 4.3 -- Dataset division; 4.4 -- Summary; Chapter 5 -- Implementation and Result; 5.1 -- Introduction; 5.2 -- An overview of the investigation; 5.2.1 -- Experimental Setup; 5.3 -- Training and testing model (baseline model); 5.4 -- Ensemble design and voting scheme; 5.5 -- Comparative study; 5.6 -- Summary; Chapter 6 -- Conclusions; 6.1 -- Concluding remarks; 6.2 -- Research contribution; 6.2.1 -- Dataset Preprocessing Technique; 6.2.2 -- Validation Technique. 
505 8 |a 6.2.3 -- Design Ensemble Method6.3 -- Research implication; 6.4 -- Recommendations for future research; 6.5 -- Closing note; References. 
520 |a Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organiza. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Phishing. 
650 0 |a Computer networks  |x Security measures. 
650 6 |a Hameçonnage. 
650 6 |a Réseaux d'ordinateurs  |x Sécurité  |x Mesures. 
650 7 |a Computer networks  |x Security measures  |2 fast 
650 7 |a Phishing  |2 fast 
700 1 |a Amiri, Iraj Sadegh,  |d 1977-  |e author. 
700 1 |a Fazeldehkordi, Elahe,  |e author. 
776 0 8 |i Print version:  |a Akanbi, Oluwatobi Ayodeji.  |t Machine learning approach to phishing detection and defense.  |d Waltham, MA : Syngress, [2015]  |z 0128029277  |z 9780128029275  |w (OCoLC)898228281 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780128029275/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 12216967 
994 |a 92  |b IZTAP