|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_ocn900882966 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
150128s2015 maua ob 000 0 eng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d DEBBG
|d OCLCF
|d YDXCP
|d OCLCQ
|d SUE
|d CEF
|d OCLCQ
|d AU@
|d LOA
|d G3B
|d CNCEN
|d S8J
|d K6U
|d COCUF
|d CNNOR
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 899568790
|a 930870565
|
020 |
|
|
|a 9780128029466
|
020 |
|
|
|a 0128029463
|
020 |
|
|
|z 9780128029275
|
020 |
|
|
|z 0128029277
|
029 |
1 |
|
|a CHBIS
|b 010438496
|
029 |
1 |
|
|a CHVBK
|b 336336675
|
029 |
1 |
|
|a DEBBG
|b BV042490971
|
029 |
1 |
|
|a DEBSZ
|b 43484148X
|
029 |
1 |
|
|a GBVCP
|b 882741268
|
035 |
|
|
|a (OCoLC)900882966
|z (OCoLC)899568790
|z (OCoLC)930870565
|
037 |
|
|
|a CL0500000540
|b Safari Books Online
|
050 |
|
4 |
|a HV6773.15.P45
|
082 |
0 |
4 |
|a 364.1633
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Akanbi, Oluwatobi Ayodeji,
|e author.
|
245 |
1 |
2 |
|a A machine learning approach to phishing detection and defense /
|c Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi.
|
264 |
|
1 |
|a Waltham, MA :
|b Syngress,
|c [2015]
|
264 |
|
4 |
|c ©2015
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Online resource; title from title page (Safari, viewed Janurary 21, 2014).
|
505 |
0 |
|
|a Cover; Title Page; Copyright Page; Contents; Abstract; List of Tables; List of figures; List of abbreviation; Chapter 1 -- Introduction; 1.1 -- Introduction; 1.2 -- Problem background; 1.3 -- Problem statement; 1.4 -- Purpose of study; 1.5 -- Project objectives; 1.6 -- Scope of study; 1.7 -- The significance of study; 1.8 -- Organization of report; Chapter 2 -- Literature Review; 2.1 -- Introduction; 2.2 -- Phishing; 2.3 -- Existing anti-phishing approaches; 2.3.1 -- Non-Content-Based Approaches; 2.3.2 -- Content-Based Approaches; 2.3.3 -- Visual Similarity-Based Approach.
|
505 |
8 |
|
|a 2.3.4 -- Character-Based Approach2.4 -- Existing techniques; 2.4.1 -- Attribute-Based Anti-Phishing Technique; 2.4.2 -- Generic Algorithm-Based Anti-Phishing Technique; 2.4.3 -- An Identity-Based Anti-Phishing Techniques; 2.5 -- Design of classifiers; 2.5.1 -- Hybrid System; 2.5.2 -- Lookup System; 2.5.3 -- Classifier System; 2.5.4 -- Ensemble System ; 2.5.4.1 -- Simple Majority Vote; 2.6 -- Normalization; 2.7 -- Related work; 2.8 -- Summary; Chapter 3 -- Research Methodology; 3.1 -- Introduction; 3.2 -- Research framework; 3.3 -- Research design.
|
505 |
8 |
|
|a 3.3.1 -- Phase 1: Dataset Processing and Feature Extraction3.3.2 -- Phase 2: Evaluation of Individual Classifier; 3.3.2.1 -- Classification Background; 3.3.2.2 -- Classifier Performance; 3.3.2.2.1 -- C5.0 Algorithm; 3.3.2.2.2 -- K-Nearest Neighbour; 3.3.2.2.3 -- Support Vector Machine (SVM); 3.3.2.2.4 -- Linear Regression; 3.3.3 -- Phase 3a: Evaluation of Classifier Ensemble; 3.3.4 -- Phase 3b: Comparison of Individual versus Ensemble Technique; 3.4 -- Dataset; 3.4.1 -- Phishtank; 3.5 -- Summary; Chapter 4 -- Feature Extraction; 4.1 -- Introduction; 4.2 -- Dataset processing.
|
505 |
8 |
|
|a 4.2.1 -- Feature Extraction4.2.2 -- Extracted Features; 4.2.3 -- Data Verification; 4.2.4 -- Data Normalization; 4.3 -- Dataset division; 4.4 -- Summary; Chapter 5 -- Implementation and Result; 5.1 -- Introduction; 5.2 -- An overview of the investigation; 5.2.1 -- Experimental Setup; 5.3 -- Training and testing model (baseline model); 5.4 -- Ensemble design and voting scheme; 5.5 -- Comparative study; 5.6 -- Summary; Chapter 6 -- Conclusions; 6.1 -- Concluding remarks; 6.2 -- Research contribution; 6.2.1 -- Dataset Preprocessing Technique; 6.2.2 -- Validation Technique.
|
505 |
8 |
|
|a 6.2.3 -- Design Ensemble Method6.3 -- Research implication; 6.4 -- Recommendations for future research; 6.5 -- Closing note; References.
|
520 |
|
|
|a Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organiza.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Phishing.
|
650 |
|
0 |
|a Computer networks
|x Security measures.
|
650 |
|
6 |
|a Hameçonnage.
|
650 |
|
6 |
|a Réseaux d'ordinateurs
|x Sécurité
|x Mesures.
|
650 |
|
7 |
|a Computer networks
|x Security measures
|2 fast
|
650 |
|
7 |
|a Phishing
|2 fast
|
700 |
1 |
|
|a Amiri, Iraj Sadegh,
|d 1977-
|e author.
|
700 |
1 |
|
|a Fazeldehkordi, Elahe,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Akanbi, Oluwatobi Ayodeji.
|t Machine learning approach to phishing detection and defense.
|d Waltham, MA : Syngress, [2015]
|z 0128029277
|z 9780128029275
|w (OCoLC)898228281
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9780128029275/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12216967
|
994 |
|
|
|a 92
|b IZTAP
|