|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_ocn900788582 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
150127s2014 enka o 001 0 eng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d E7B
|d DEBBG
|d OCLCF
|d N$T
|d DEBSZ
|d OCLCQ
|d OCLCO
|d AGLDB
|d ICA
|d CNNOR
|d D6H
|d OCLCQ
|d VTS
|d CEF
|d NLE
|d STF
|d UKMGB
|d OCLCQ
|d G3B
|d UKAHL
|d VT2
|d RDF
|d OCLCO
|d OCLCQ
|d QGK
|
016 |
7 |
|
|a 018006757
|2 Uk
|
019 |
|
|
|a 1259136046
|
020 |
|
|
|a 9781783558759
|q (electronic bk.)
|
020 |
|
|
|a 178355875X
|q (electronic bk.)
|
020 |
|
|
|a 1783558741
|
020 |
|
|
|a 9781783558742
|
020 |
|
|
|z 9781783558742
|
029 |
1 |
|
|a CHNEW
|b 000708797
|
029 |
1 |
|
|a DEBBG
|b BV042490961
|
029 |
1 |
|
|a DEBSZ
|b 434841382
|
029 |
1 |
|
|a DEBSZ
|b 484737627
|
029 |
1 |
|
|a GBVCP
|b 882844946
|
029 |
1 |
|
|a UKMGB
|b 018006757
|
035 |
|
|
|a (OCoLC)900788582
|z (OCoLC)1259136046
|
037 |
|
|
|a CL0500000539
|b Safari Books Online
|
050 |
|
4 |
|a QA76.73.S28
|
072 |
|
7 |
|a COM
|x 051010
|2 bisacsh
|
082 |
0 |
4 |
|a 005.13
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Nicolas, Patrick R.,
|e author.
|
245 |
1 |
0 |
|a Scala for machine learning :
|b leverage Scala and machine learning to construct and study systems that can learn from data /
|c Patrick R. Nicolas.
|
264 |
|
1 |
|a Birmingham, UK :
|b Packt Publishing,
|c 2014.
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
490 |
1 |
|
|a Community experience distilled
|
588 |
0 |
|
|a Online resource; title from cover (Safari, viewed January 22, 2015).
|
500 |
|
|
|a Includes index.
|
505 |
0 |
|
|a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started; Mathematical notation for the curious; Why machine learning?; Classification; Prediction; Optimization; Regression; Why Scala?; Abstraction; Scalability; Configurability; Maintainability; Computation on demand; Model categorization; Taxonomy of machine learning algorithms; Unsupervised learning; Clustering; Dimension reduction; Supervised learning; Generative models; Discriminative models; Reinforcement learning; Tools and frameworks; Java; Scala
|
505 |
8 |
|
|a Apache Commons MathDescription; Licensing; Installation; JFreeChart; Description; Licensing; Installation; Other libraries and frameworks; Source code; Context versus view bounds; Presentation; Primitives and implicits; Primitive types; Type conversions; Operators; Immutability; Performance of Scala iterators; Let's kick the tires; Overview of computational workflows; Writing a simple workflow; Selecting a dataset; Loading the dataset; Preprocessing the dataset; Creating a model (learning); Classify the data; Summary; Chapter 2: Hello World!; Modeling; A model by any other name
|
505 |
8 |
|
|a Model versus designSelecting a model's features; Extracting features; Designing a workflow; The computational framework; The pipe operator; Monadic data transformation; Dependency injection; Workflow modules; The workflow factory; Examples of workflow components; The preprocessing module; The clustering module; Assessing a model; Validation; Key metrics; Implementation; K-fold cross-validation; Bias-variance decomposition; Overfitting; Summary; Chapter 3: Data Preprocessing; Time series; Moving averages; The simple moving average; The weighted moving average; The exponential moving average
|
505 |
8 |
|
|a Fourier analysisDiscrete Fourier transform (DFT); DFT-based filtering; Detection of market cycles; The Kalman filter; The state space estimation; The transition equation; The measurement equation; The recursive algorithm; Prediction; Correction; Kalman smoothing; Experimentation; Alternative preprocessing techniques; Summary; Chapter 4: Unsupervised Learning; Clustering; K-means clustering; Measuring similarity; Overview of the K-means algorithm; Step 1 -- cluster configuration; Step 2 -- cluster assignment; Step 3 -- iterative reconstruction; Curse of dimensionality; Experiment
|
505 |
8 |
|
|a Tuning the number of clustersValidation; Expectation-maximization (EM) algorithm; Gaussian mixture model; EM overview; Implementation; Testing; Online EM; Dimension reduction; Principal components analysis (PCA); Algorithm; Implementation; Test case; Evaluation; Other dimension reduction techniques; Performance considerations; K-means; EM; PCA; Summary; Chapter 5: Naïve Bayes Classifiers; Probabilistic graphical models; Naïve Bayes classifiers; Introducing the multinomial Naïve Bayes; Formalism; The frequentist perspective; The predictive model; The zero-frequency problem; Implementation
|
520 |
|
|
|a Are you curious about AI? All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book!
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Scala (Computer program language)
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Regression analysis
|x Data processing.
|
650 |
|
6 |
|a Scala (Langage de programmation)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Analyse de régression
|x Informatique.
|
650 |
|
7 |
|a COMPUTERS
|x Programming Languages
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a Regression analysis
|x Data processing.
|2 fast
|0 (OCoLC)fst01093274
|
650 |
|
7 |
|a Scala (Computer program language)
|2 fast
|0 (OCoLC)fst01763491
|
776 |
0 |
8 |
|i Print version:
|a Nicolas, Patrick R.
|t Scala for machine learning : leverage scala and machine learning to construct and study systems that can learn from data.
|d Birmingham, [England] : Packt Publishing, ©2014
|h xi, 491 pages
|k Community experience distilled.
|z 9781783558742
|
830 |
|
0 |
|a Community experience distilled.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781783558742/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH28059734
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11001679
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 929412
|
994 |
|
|
|a 92
|b IZTAP
|