Cargando…

Python for finance /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hilpisch, Yves (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, 2014.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn898069540
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 141212t20142015caua ob 001 0 eng d
010 |a  2015460491 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d TEFOD  |d YDXCP  |d UKMGB  |d UMI  |d CDX  |d OCLCF  |d WAU  |d COO  |d DEBBG  |d REB  |d CUS  |d OCLCO  |d DEBSZ  |d HV6  |d IUL  |d TEFOD  |d EBLCP  |d FEM  |d OCLCQ  |d NJR  |d IVU  |d OCLCO  |d MERER  |d OCLCQ  |d CEF  |d NTG  |d OCLCQ  |d UAB  |d UKAHL  |d OCLCO  |d OCLCQ 
016 7 |a 017002460  |2 Uk 
019 |a 899528079  |a 900395169  |a 907364070  |a 923709872  |a 968091293  |a 968998130  |a 1191052866 
020 |a 9781491945391  |q (electronic bk.) 
020 |a 1491945397  |q (electronic bk.) 
020 |a 9781491945384  |q (electronic bk.) 
020 |a 1491945389  |q (electronic bk.) 
020 |a 9781491945360 
020 |a 1491945362 
020 |a 1491945281 
020 |a 9781491945285 
020 |a 9781322457994 
020 |a 1322457999 
020 |z 9781491945285 
029 1 |a DEBBG  |b BV042489859 
029 1 |a DEBSZ  |b 434830410 
029 1 |a DEBSZ  |b 475033566 
029 1 |a GBVCP  |b 882841858 
029 1 |a AU@  |b 000067094450 
029 1 |a AU@  |b 000056938666 
035 |a (OCoLC)898069540  |z (OCoLC)899528079  |z (OCoLC)900395169  |z (OCoLC)907364070  |z (OCoLC)923709872  |z (OCoLC)968091293  |z (OCoLC)968998130  |z (OCoLC)1191052866 
037 |a 2F55EF1D-B363-4469-BAA0-61A87C9C8640  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98 
050 4 |a HG176.5  |b .H55 2015eb 
072 7 |a BUS  |x 027000  |2 bisacsh 
082 0 4 |a 332.0285  |2 23 
049 |a UAMI 
100 1 |a Hilpisch, Yves,  |e author. 
245 1 0 |a Python for finance /  |c Yves Hilpisch. 
246 1 |i Cover subtitle:  |a Analyze big financial data 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c 2014. 
264 4 |c ©2015 
300 |a 1 online resource (xv, 586 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed December 15, 2014). 
520 8 |a Annotation  |b The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include:Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practicesFinancial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regressionSpecial topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies. 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Finance  |x Computer programs. 
650 0 |a Finance  |x Statistical methods  |x Data processing. 
650 0 |a Python (Computer program language) 
650 6 |a Finances  |x Méthodes statistiques  |x Informatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a BUSINESS & ECONOMICS  |x Finance.  |2 bisacsh 
650 7 |a Finance  |x Computer programs.  |2 fast  |0 (OCoLC)fst00924366 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |a Hilpisch, Yves.  |t Python for finance.  |d [Place of publication not identified] : O'Reilly Media, 2014  |z 1491945281  |w (OCoLC)880566705 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491945360/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Coutts Information Services  |b COUT  |n 30325384 
938 |a EBSCOhost  |b EBSC  |n 925360 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30325384 
938 |a YBP Library Services  |b YANK  |n 12204296 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28071983 
994 |a 92  |b IZTAP