Cargando…

Business intelligence guidebook : from data integration to analytics /

This book arms you with the knowledge you need to design rock-solid business intelligence and data integration processes. Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-make...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sherman, Rick (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, MA : Morgan Kaufman, [2015]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Intro
  • Cover image
  • Title page
  • Table of Contents
  • Copyright
  • Foreword
  • How to Use This Book
  • Acknowledgments
  • Part I. Concepts and Context
  • Chapter 1. The Business Demand for Data, Information, and Analytics
  • Just One Word: Data
  • Welcome to the Data Deluge
  • Taming the Analytics Deluge
  • Too Much Data, Too Little Information
  • Data Capture versus Information Analysis
  • The Five Cs of Data
  • Common Terminology from our Perspective
  • Part II. Business and Technical Needs
  • Chapter 2. Justifying BI: Building the Business and Technical Case
  • Why Justification is Needed
  • Building the Business Case
  • Building the Technical Case
  • Assessing Readiness
  • Creating a BI Road Map
  • Developing Scope, Preliminary Plan, and Budget
  • Obtaining Approval
  • Common Justification Pitfalls
  • Chapter 3. Defining Requirements-Business, Data and Quality
  • The Purpose of Defining Requirements
  • Goals
  • Deliverables
  • Roles
  • Defining Requirements Workflow
  • Interviewing
  • Documenting Requirements
  • Part III. Architectural Framework
  • Chapter 4. Architecture Framework
  • The Need for Architectural Blueprints
  • Architectural Framework
  • Information Architecture
  • Data Architecture
  • Technical Architecture
  • Product Architecture
  • Metadata
  • Security and Privacy
  • Avoiding Accidents with Architectural Planning
  • Do Not Obsess over the Architecture
  • Chapter 5. Information Architecture
  • The Purpose of an Information Architecture
  • Data Integration Framework
  • DIF Information Architecture
  • Operational BI versus Analytical BI
  • Master Data Management
  • Chapter 6. Data Architecture
  • The Purpose of a Data Architecture
  • History
  • Data Architectural Choices
  • Data Integration Workflow
  • Data Workflow-Rise of EDW Again
  • Operational Data Store
  • Chapter 7. Technology & Product Architectures.
  • Where are the Product and Vendor Names?
  • Evolution Not Revolution
  • Technology Architecture
  • Product and Technology Evaluations
  • Part IV. Data Design
  • Chapter 8. Foundational Data Modeling
  • The Purpose of Data Modeling
  • Definitions-The Difference Between a Data Model and Data Modeling
  • Three Levels of Data Models
  • Data Modeling Workflow
  • Where Data Models Are Used
  • Entity-Relationship (ER) Modeling Overview
  • Normalization
  • Limits and Purpose of Normalization
  • Chapter 9. Dimensional Modeling
  • Introduction to Dimensional Modeling
  • High-Level View of a Dimensional Model
  • Facts
  • Dimensions
  • Schemas
  • Entity Relationship versus Dimensional Modeling
  • Purpose of Dimensional Modeling
  • Fact Tables
  • Achieving Consistency
  • Advanced Dimensions and Facts
  • Dimensional Modeling Recap
  • Chapter 10. Business Intelligence Dimensional Modeling
  • Introduction
  • Hierarchies
  • Outrigger Tables
  • Slowly Changing Dimensions
  • Causal Dimension
  • Multivalued Dimensions
  • Junk Dimensions
  • Value Band Reporting
  • Heterogeneous Products
  • Alternate Dimensions
  • Too Few or Too Many Dimensions
  • Part V. Data Integration Design
  • Chapter 11. Data Integration Design and Development
  • Getting Started with Data Integration
  • Data Integration Architecture
  • Data Integration Requirements
  • Data Integration Design
  • Data Integration Standards
  • Loading Historical Data
  • Data Integration Prototyping
  • Data Integration Testing
  • Chapter 12. Data Integration Processes
  • Introduction: Manual Coding versus Tool-Based Data Integration
  • Data Integration Services
  • Part VI. Business Intelligence Design
  • Chapter 13. Business Intelligence Applications
  • Revise BI Applications List
  • BI Personas
  • BI Design Layout-Best Practices
  • Data Design for Self-Service BI
  • Matching Types of Analysis to Visualizations.
  • BI Content Specifications
  • Chapter 14. BI Design and Development
  • BI Design
  • BI Development
  • BI Application Testing
  • Chapter 15. Advanced Analytics
  • Advanced Analytics Overview and Background
  • Predictive Analytics and Data Mining
  • Analytical Sandboxes and Hubs
  • Big Data Analytics
  • Data Visualization
  • Chapter 16. Data Shadow Systems
  • The Data Shadow Problem
  • Are There Data Shadow Systems in Your Organization?
  • What Kind of Data Shadow Systems Do You Have?
  • Data Shadow System Triage
  • The Evolution of Data Shadow Systems in an Organization
  • Damages Caused by Data Shadow Systems
  • The Benefits of Data Shadow Systems
  • Moving beyond Data Shadow Systems
  • Misguided Attempts to Replace Data Shadow Systems
  • Renovating Data Shadow Systems
  • Part VII. Organization
  • Chapter 17. People, Process and Politics
  • The Technology Trap
  • The Business and IT Relationship
  • Roles and Responsibilities
  • Building the BI Team
  • Training
  • Data Governance
  • Chapter 18. Project Management
  • The Role of Project Management
  • Establishing a BI Program
  • BI Assessment
  • Work Breakdown Structure
  • BI Architectural Plan
  • BI Projects Are Different
  • Project Methodologies
  • BI Project Phases
  • BI Project Schedule
  • Chapter 19. Centers of Excellence
  • The Purpose of Centers of Excellence
  • BI COE
  • Data Integration Center of Excellence
  • Enabling a Data-Driven Enterprise
  • Index.