Power ultrasonics : applications of high-intensity ultrasound /
The industrial interest in ultrasonic processing has revived during recent years because ultrasonic technology may represent a flexible "green" alternative for more energy efficient processes. In the area of ultrasonic processing in fluid and multiphase media the development of a new famil...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; Waltham, Mass :
Woodhead Publishing,
©2015.
|
Colección: | Woodhead Publishing series in electronic and optical materials ;
no. 66. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Front Cover; Power Ultrasonics: Applications of High-intensity Ultrasound; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; Chapter 1: Introduction to power ultrasonics; 1.1. Introduction; 1.2. The field of ultrasonics; 1.3. Power ultrasonics; 1.4. Historical notes; 1.5. Coverage of this book; Part One: Fundamentals; Chapter 2: High-intensity ultrasonic waves in fluids: nonlinear propagation and effects; 2.1. Introduction; 2.2. Nonlinear phenomena; 2.2.1. Basic equations: acoustic, entropy, and vorticity modes
- 2.2.2. Scope of nonlinear acoustics2.3. Nonlinear interactions within the acoustic mode; 2.3.1. Simple waves; 2.3.2. Quadratic approximation; 2.3.3. Nonlinear distortion and shock formation; 2.3.4. Shock structure; 2.3.5. Intense acoustic fields radiated by finite-aperture sources; 2.3.6. Formation of high-intensity ultrasound fields using focusing; 2.4. Nonlinear interactions between the acoustic and nonacoustic modes; 2.4.1. General remarks; 2.4.2. Acoustic streaming and radiation force; 2.4.3. Medium heating due to absorption of acoustic waves; 2.4.4. Heat release at a shock
- 2.5. ConclusionChapter 3: Acoustic cavitation: bubbledynamics in high-powerultrasonic fields; 3.1. Introduction; 3.2. Cavitation thresholds; 3.2.1. Static tension threshold; 3.2.2. Acoustic cavitation threshold; 3.3. Single-bubble dynamics; 3.3.1. Bubble models; 3.3.2. Response curves; 3.3.2.1. Low driving; 3.3.2.2. High driving; 3.3.3. Parameter space diagrams; 3.3.4. Bubble habitat; 3.3.5. Single-bubble dynamics: examples; 3.3.5.1. Sound radiation; 3.3.5.2. Deformation, splitting, and merging; 3.3.5.3. Jet formation; 3.4. Bubble ensemble dynamics; 3.4.1. Bubble clusters
- 3.4.2. Bubble filaments3.4.3. Bubble double layers; 3.4.4. Bubble cones; 3.4.5. N-bubble model; 3.4.6. N-bubble simulation examples; 3.5. Acoustic cavitation noise; 3.5.1. Subharmonics and period doubling; 3.5.2. Synchronization; 3.5.3. Bubble splitting; 3.6. Sonoluminescence; 3.7. Conclusions; Chapter 4: High-intensity ultrasonic waves in solids: nonlinear dynamicsand effects; 4.1. Introduction; 4.2. Fundamental nonlinear equations; 4.2.1. Constitutive equations and equation of motion; 4.2.2. Approximate analytical solutions; 4.2.2.1. Applications
- 4.2.3. Isotropic solids and wave number modulation4.2.3.1. Applications; 4.3. Nonlinear effects in progressive and stationary waves; 4.3.1. Harmonic balance in progressive waves: dispersion and attenuation; 4.3.2. Frequency mixing; 4.3.2.1. Applications; 4.3.3. Stationary waves: nonlinear sources; 4.3.3.1. Applications; 4.4. Conclusions; Chapter 5: Piezoelectric ceramic materials for power ultrasonic transducers; 5.1. Introduction; 5.2. Fundamentals of ferro-piezoelectric ceramics; 5.2.1. From the ferroelectric single-crystal to the ceramic; 5.2.2. Ferroelectric hysteresis and domains