Cargando…

Predictive analytics with Microsoft Azure Machine Learning : build and deploy actionable solutions in minutes /

Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Busi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Barga, Roger (Autor), Fontama, Valentine (Autor), Tok, Wee-Hyong (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [New York, New York] : Apress, 2014.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn897115919
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 141201s2014 nyu ob 001 0 eng d
010 |a  2015413209 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d CUS  |d VT2  |d UMI  |d SFB  |d UPM  |d COO  |d GW5XE  |d CDX  |d OCLCF  |d B24X7  |d IDEBK  |d DEBBG  |d EBLCP  |d YDXCP  |d BTCTA  |d Z5A  |d LIV  |d MERUC  |d ESU  |d OCLCQ  |d IOG  |d OCLCO  |d REB  |d VLB  |d CEF  |d DEHBZ  |d OCLCQ  |d OCLCO  |d INT  |d U3W  |d AU@  |d OCLCQ  |d OCLCO  |d WYU  |d YOU  |d OCLCQ  |d OCLCO  |d UAB  |d UKAHL  |d OCLCQ  |d OCLCO  |d DCT  |d ERF  |d OCLCQ  |d WURST  |d ADU  |d HAGCC  |d WSU  |d IG$  |d DLC  |d EZ9  |d OCLCO  |d OCL  |d OH1  |d OCLCQ  |d OCLCO 
019 |a 899214546  |a 899226852  |a 910990648  |a 973340973  |a 985031965  |a 987926498  |a 1005805553  |a 1026432717  |a 1048159626  |a 1066471637  |a 1066493668  |a 1082293713  |a 1086468212  |a 1110814465  |a 1112540381  |a 1112821756  |a 1129358702  |a 1153052097  |a 1300218885 
020 |a 9781484204450  |q electronic bk. 
020 |a 148420445X  |q electronic bk. 
020 |z 9781484204467 
020 |z 1484204468  |q (print) 
024 7 |a 10.1007/978-1-4842-0445-0  |2 doi 
029 1 |a AU@  |b 000056047131 
029 1 |a CHNEW  |b 000890530 
029 1 |a DEBBG  |b BV042490492 
029 1 |a DEBBG  |b BV043617727 
029 1 |a DEBSZ  |b 434836710 
029 1 |a GBVCP  |b 882843346 
029 1 |a NLGGC  |b 385828624 
029 1 |a CHVBK  |b 577478834 
029 1 |a CHNEW  |b 001068672 
029 1 |a AU@  |b 000067098923 
035 |a (OCoLC)897115919  |z (OCoLC)899214546  |z (OCoLC)899226852  |z (OCoLC)910990648  |z (OCoLC)973340973  |z (OCoLC)985031965  |z (OCoLC)987926498  |z (OCoLC)1005805553  |z (OCoLC)1026432717  |z (OCoLC)1048159626  |z (OCoLC)1066471637  |z (OCoLC)1066493668  |z (OCoLC)1082293713  |z (OCoLC)1086468212  |z (OCoLC)1110814465  |z (OCoLC)1112540381  |z (OCoLC)1112821756  |z (OCoLC)1129358702  |z (OCoLC)1153052097  |z (OCoLC)1300218885 
037 |a CL0500000520  |b Safari Books Online 
050 4 |a HD30.2  |b .B37 2014 
072 7 |a COM  |x 051430  |2 bisacsh 
072 7 |a UN  |2 bicssc 
072 7 |a UMT  |2 bicssc 
082 0 4 |a 005.74  |2 23 
049 |a UAMI 
100 1 |a Barga, Roger,  |e author. 
245 1 0 |a Predictive analytics with Microsoft Azure Machine Learning :  |b build and deploy actionable solutions in minutes /  |c Roger Barga, Valentine Fontama, Wee Hyong Tok. 
264 1 |a [New York, New York] :  |b Apress,  |c 2014. 
264 4 |c ©2014 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
588 0 |a Vendor-supplied metadata. 
520 |a Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft. 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Windows Azure. 
630 0 7 |a Windows Azure  |2 fast 
650 0 |a Information technology  |x Management. 
650 0 |a Database management. 
650 2 |a Electronic Data Processing 
650 6 |a Informatique. 
650 6 |a Bases de données  |x Gestion. 
650 6 |a Technologie de l'information  |x Gestion. 
650 7 |a COMPUTERS  |x Software Development & Engineering  |x Project Management.  |2 bisacsh 
650 7 |a Database management  |2 fast 
650 7 |a Information technology  |x Management  |2 fast 
653 0 0 |a computerwetenschappen 
653 0 0 |a computer sciences 
653 0 0 |a databasebeheer 
653 0 0 |a database management 
653 1 0 |a Information and Communication Technology (General) 
653 1 0 |a Informatie- en communicatietechnologie (algemeen) 
700 1 |a Fontama, Valentine,  |e author. 
700 1 |a Tok, Wee-Hyong,  |e author. 
776 0 8 |i Printed edition:  |z 9781484204467 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484204450/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29490602 
938 |a Books 24x7  |b B247  |n bks00077638 
938 |a Baker and Taylor  |b BTCP  |n BK0017719283 
938 |a Coutts Information Services  |b COUT  |n 28753437 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1964920 
938 |a EBSCOhost  |b EBSC  |n 916106 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30192296 
938 |a YBP Library Services  |b YANK  |n 12182432 
938 |a YBP Library Services  |b YANK  |n 12229312 
994 |a 92  |b IZTAP