Cargando…

Python data analysis : learn how to apply powerful data analysis techniques with popular open source Python modules /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Idris, Ivan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, U.K. : Packt Pub., 2014.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with Python Libraries; Software used in this book; Installing software and setup; On Windows; On Linux; On Mac OS X; Building NumPY, SciPy, matplotlib, and IPython from source; Installing with setuptools; NumPy arrays; Simple application; Using IPython as a shell; Reading manual pages; IPython notebooks; Where to find help and references; Summary; Chapter 2: NumPy Arrays; The NumPy array object; The advantages of NumPy arrays.
  • Creating a multidimensional arraySelecting NumPy array elements; NumPy numerical types; Data type objects; Character codes; The dtype constructors; The dtype attributes; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting NumPy arrays; NumPy array attributes; Converting arrays; Creating array views and copies; Fancy indexing; Indexing with a list of locations; Indexing NumPy arrays with Booleans; Broadcasting NumPy arrays; Summary; Chapter 3: Statistics and Linear Algebra; NumPy and SciPy modules; Basic descriptive statistics with NumPy.
  • Linear algebra with NumPyInverting matrices with NumPy; Solving linear systems with NumPy; Finding eigenvalues and eigenvectors with NumPy; NumPy random numbers; Gambling with the binomial distribution; Sampling the normal distribution; Performing a normality test with SciPy; Creating a NumPy-masked array; Disregarding negative and extreme values; Summary; Chapter 4: pandas Primer; Installing and exploring pandas; pandas DataFrames; pandas Series; Querying data in pandas; Statistics with pandas DataFrames; Data aggregation with pandas DataFrames; Concatenating and appending DataFrames.
  • Joining DataFramesHandling missing values; Dealing with dates; Pivot tables; Remote data access; Summary; Chapter 5: Retrieving, Processing, and Storing Data; Writing CSV files with NumPy and pandas; Comparing the NumPy .npy binary format and pickling pandas DataFrames; Storing data with PyTables; Reading and writing pandas DataFrames to HDF5 stores; Reading and writing to Excel with pandas; Using REST web services and JSON; Reading and writing JSON with pandas; Parsing RSS and Atom feeds; Parsing HTML with BeautifulSoup; Summary; Chapter 6: Data Visualization; matplotlib subpackages.
  • Basic matplotlib plotsLogarithmic plots; Scatter plots; Legends and annotations; Three-dimensional plots; Plotting in pandas; Lag plots; Autocorrelation plots; Plot.ly; Summary; Chapter 7: Signal Processing and Time Series; statsmodels subpackages; Moving averages; Window functions; Defining cointegration; Autocorrelation; Autoregressive models; ARMA models; Generating periodic signals; Fourier analysis; Spectral analysis; Filtering; Summary; Chapter 8: Working with Databases; Lightweight access with sqlite3; Accessing databases from pandas; SQLAlchemy; Installing and setting up SQLAlchemy.