Cargando…

Python data analysis : learn how to apply powerful data analysis techniques with popular open source Python modules /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Idris, Ivan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, U.K. : Packt Pub., 2014.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_ocn896729150
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 141121s2014 enka ob 001 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d E7B  |d YDXCP  |d COO  |d DEBBG  |d VT2  |d REB  |d TEFOD  |d OCLCF  |d TEFOD  |d OCLCQ  |d N$T  |d OCLCQ  |d AGLDB  |d COCUF  |d ICA  |d K6U  |d CNNOR  |d CCO  |d PIFAG  |d FVL  |d U3W  |d D6H  |d STF  |d OCLCQ  |d VTS  |d CEF  |d NLE  |d INT  |d AU@  |d UKMGB  |d OCLCQ  |d G3B  |d TKN  |d OCLCQ  |d M8D  |d OCLCO  |d QGK  |d INARC  |d OCLCQ  |d OCLCO 
016 7 |a 018006706  |2 Uk 
019 |a 906027129  |a 1259143653 
020 |a 9781783553365  |q (electronic bk.) 
020 |a 1783553367  |q (electronic bk.) 
020 |z 1783553359 
020 |z 9781783553358 
029 1 |a CHNEW  |b 000667215 
029 1 |a CHNEW  |b 000687699 
029 1 |a CHNEW  |b 000687700 
029 1 |a DEBBG  |b BV042490215 
029 1 |a DEBSZ  |b 434833959 
029 1 |a DEBSZ  |b 484732528 
029 1 |a UKMGB  |b 018006706 
035 |a (OCoLC)896729150  |z (OCoLC)906027129  |z (OCoLC)1259143653 
037 |a CL0500000503  |b Safari Books Online 
037 |a 2DEA0AFA-5597-4C78-905D-96BE205676DD  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98  |b I37 2014 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Idris, Ivan. 
245 1 0 |a Python data analysis :  |b learn how to apply powerful data analysis techniques with popular open source Python modules /  |c Ivan Idris. 
246 3 0 |a Learn how to apply powerful data analysis techniques with popular open source Python modules 
260 |a Birmingham, U.K. :  |b Packt Pub.,  |c 2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Community experience distilled 
588 0 |a Online resource; title from title page (Safari, viewed November 17, 2014). 
504 |a Includes bibliographical references and index. 
520 8 |a Annotation  |b This book is for programmers, scientists, and engineers who have knowledge of the Python language and know the basics of data science. It is for those who wish to learn different data analysis methods using Python and its libraries. This book contains all the basic ingredients you need to become an expert data analyst. 
505 0 |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with Python Libraries; Software used in this book; Installing software and setup; On Windows; On Linux; On Mac OS X; Building NumPY, SciPy, matplotlib, and IPython from source; Installing with setuptools; NumPy arrays; Simple application; Using IPython as a shell; Reading manual pages; IPython notebooks; Where to find help and references; Summary; Chapter 2: NumPy Arrays; The NumPy array object; The advantages of NumPy arrays. 
505 8 |a Creating a multidimensional arraySelecting NumPy array elements; NumPy numerical types; Data type objects; Character codes; The dtype constructors; The dtype attributes; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting NumPy arrays; NumPy array attributes; Converting arrays; Creating array views and copies; Fancy indexing; Indexing with a list of locations; Indexing NumPy arrays with Booleans; Broadcasting NumPy arrays; Summary; Chapter 3: Statistics and Linear Algebra; NumPy and SciPy modules; Basic descriptive statistics with NumPy. 
505 8 |a Linear algebra with NumPyInverting matrices with NumPy; Solving linear systems with NumPy; Finding eigenvalues and eigenvectors with NumPy; NumPy random numbers; Gambling with the binomial distribution; Sampling the normal distribution; Performing a normality test with SciPy; Creating a NumPy-masked array; Disregarding negative and extreme values; Summary; Chapter 4: pandas Primer; Installing and exploring pandas; pandas DataFrames; pandas Series; Querying data in pandas; Statistics with pandas DataFrames; Data aggregation with pandas DataFrames; Concatenating and appending DataFrames. 
505 8 |a Joining DataFramesHandling missing values; Dealing with dates; Pivot tables; Remote data access; Summary; Chapter 5: Retrieving, Processing, and Storing Data; Writing CSV files with NumPy and pandas; Comparing the NumPy .npy binary format and pickling pandas DataFrames; Storing data with PyTables; Reading and writing pandas DataFrames to HDF5 stores; Reading and writing to Excel with pandas; Using REST web services and JSON; Reading and writing JSON with pandas; Parsing RSS and Atom feeds; Parsing HTML with BeautifulSoup; Summary; Chapter 6: Data Visualization; matplotlib subpackages. 
505 8 |a Basic matplotlib plotsLogarithmic plots; Scatter plots; Legends and annotations; Three-dimensional plots; Plotting in pandas; Lag plots; Autocorrelation plots; Plot.ly; Summary; Chapter 7: Signal Processing and Time Series; statsmodels subpackages; Moving averages; Window functions; Defining cointegration; Autocorrelation; Autoregressive models; ARMA models; Generating periodic signals; Fourier analysis; Spectral analysis; Filtering; Summary; Chapter 8: Working with Databases; Lightweight access with sqlite3; Accessing databases from pandas; SQLAlchemy; Installing and setting up SQLAlchemy. 
546 |a English. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Programming languages (Electronic computers) 
650 6 |a Python (Langage de programmation) 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Programming languages (Electronic computers)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 |z 1783553359 
776 0 |z 1322236364 
830 0 |a Community experience distilled. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781783553358/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ebrary  |b EBRY  |n ebr10962285 
938 |a EBSCOhost  |b EBSC  |n 880858 
938 |a Internet Archive  |b INAR  |n pythondataanalys0000idri 
938 |a YBP Library Services  |b YANK  |n 12142745 
994 |a 92  |b IZTAP