Sparse modeling : theory, algorithms, and applications /
Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing. Sparse Modeling: Theory, Algo...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton, FL :
CRC Press,
[2015]
|
Colección: | Chapman & Hall/CRC machine learning & pattern recognition series.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- 1. Introduction
- 2. Sparse recovery : problem formulations
- 3. Theoretical results (deterministic part)
- 4. Theoretical results (probabilistic part)
- 5. Algorithms for sparse recovery problems
- 6. Beyond LASSO : structured sparsity
- 7. Beyond LASSO : other loss functions
- 8. Sparse graphical models
- 9. Sparse matrix factorization : dictionary learning and beyond.