Cargando…

Modeling techniques in predictive analytics with Python and R : a guide to data science /

Thomas W. Miller's balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you're new to predictive analytics, Miller gives you a strong foundation for achieving accurate, acti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Miller, Thomas W., 1946-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Upper Saddle River, NJ : Pearson Education, 2014, ©2015.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_ocn894504527
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 141105t20142015njua ob 001 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d UV0  |d DEBBG  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d CEF  |d AU@  |d TXI  |d RDF  |d OCLCO  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO 
019 |a 1019948765 
020 |a 9780133892123 
020 |a 0133892123 
020 |a 0133892069 
020 |a 9780133892062 
020 |z 9780133892062 
029 1 |a DEBBG  |b BV042490011 
029 1 |a DEBSZ  |b 434831921 
029 1 |a GBVCP  |b 844397091 
029 1 |a NZ1  |b 15763162 
035 |a (OCoLC)894504527  |z (OCoLC)1019948765 
037 |a CL0500000496  |b Safari Books Online 
050 4 |a QA279.4  |b .M555 2015 
082 0 4 |a 519.5/42  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Miller, Thomas W.,  |d 1946- 
245 1 0 |a Modeling techniques in predictive analytics with Python and R :  |b a guide to data science /  |c Thomas W. Miller. 
246 3 0 |a Guide to data science 
260 |a Upper Saddle River, NJ :  |b Pearson Education,  |c 2014, ©2015. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed October 24, 2014). 
504 |a Includes bibliographical references and index. 
505 0 0 |t Analytics and data science --  |t Advertising and promotion --  |t Preference and choice --  |t Market basket analysis --  |t Economic data analysis --  |t Operations management --  |t Text analytics --  |t Sentiment analysis --  |t Sports analytics --  |t Spatial data analysis --  |t Brand and price --  |t The big little data game --  |g [Appendix] A.  |t Data science methods --  |g [Appendix] B.  |t Measurement --  |g [Appendix] C.  |t Case studies --  |g [Appendix] D.  |t Code and utilities. 
520 |a Thomas W. Miller's balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you're new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you're already a modeler, programmer, or manager, you'll learn crucial skills you don't already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You'll learn why each problem matters, what data are relevant, and how to explore the data you've identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You'll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Decision making  |x Statistical methods. 
650 0 |a Python (Computer program language) 
650 0 |a R (Computer program language) 
650 0 |a Forecasting  |x Mathematical models. 
650 0 |a Business planning. 
650 6 |a Prise de décision  |x Méthodes statistiques. 
650 6 |a Python (Langage de programmation) 
650 6 |a R (Langage de programmation) 
650 7 |a Business planning  |2 fast 
650 7 |a Decision making  |x Statistical methods  |2 fast 
650 7 |a Forecasting  |x Mathematical models  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780133892123/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41026947 
994 |a 92  |b IZTAP