Cargando…

Practical neural network recipes in C++ /

This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book pr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Masters, Timothy
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Morgan Kaufmann, [1993]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn892067383
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 141003s1993 maua fob 000 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d LIP  |d STF  |d OCLCQ  |d SFB  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9780080514338  |q (electronic bk.) 
020 |a 0080514332  |q (electronic bk.) 
020 |z 0124790402 
020 |z 9780124790407 
029 1 |a AU@  |b 000056933618 
029 1 |a NZ1  |b 15922268 
035 |a (OCoLC)892067383 
050 4 |a QA76.87  |b M423 1993eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3  |2 22 
084 |a *68N15  |2 msc 
084 |a 68-01  |2 msc 
084 |a 68T05  |2 msc 
084 |a ST 250  |2 rvk 
084 |a ST 250 C01  |2 rvk 
084 |a ST 285  |2 rvk 
084 |a ST 300  |2 rvk 
084 |a DAT 717f  |2 stub 
084 |a DAT 358f  |2 stub 
049 |a UAMI 
100 1 |a Masters, Timothy. 
245 1 0 |a Practical neural network recipes in C++ /  |c Timothy Masters. 
264 1 |a Boston :  |b Morgan Kaufmann,  |c [1993] 
264 4 |c ©1993 
300 |a 1 online resource (xviii, 493 pages) :  |b illustrations 
300 |a 1 online resource (1 disc (3 1/2 in.)) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Accompanied by Diskette (702000135). 
504 |a Includes bibliographical references (pages 479-490). 
520 |a This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assumed and all models are presented from the ground up. 
588 0 |a Print version record. 
505 0 |a Front Cover; Practical Neural Network Recipes in C++; Copyright Page; Dedication; Table of Contents; Preface; Chapter 1. Foundations; Motivation; New Life for Old Techniques; Perceptrons and Linear Separability; Neural Network Capabilities; Basic Structure of a Neural Network; Training; Validation; Chapter 2. Classification; Binary Decisions; Multiple Classes; Supervised versus Unsupervised Training; Chapter 3. Autoassociation; Autoassociative Filtering; Noise Reduction; Learning a Prototype from Exemplars; Exposing Isolated Events; Pattern Completion; Error Correction; Data Compression. 
505 8 |a Chapter 4. Time-Series PredictionThe Basic Model; Input Data; Multiple Prediction; Multiple Predictors; Measuring Prediction Error; Chapter 5. Function Approximation; Univariate Function Approximation; Inverse Modeling; Multiple Regression; Chapter 6. Multilayer Feedforward Networks; Basic Architecture; Theoretical Discussion; Algorithms for Executing the Network; Training the Network; Training by Backpropagation of Errors; Training by Conjugate Gradients; Eluding Local Minima in Learning; When to Use a Multiple-Layer Feedforward Network; Chapter 7. Eluding Local Minima I: Simulated Annealing. 
505 8 |a OverviewChoosing the Annealing Parameters; Implementation in Feedforward Network Learning; A Sample Program; A Sample Function; Random Number Generation; Going on from Here; Chapter 8. Eluding Local Minima II: Genetic Optimization; Overview; Designing the Genetic Structure; Evaluation; Parent Selection; Reproduction; Mutation; A Genetic Minimization Subroutine; Some Functions for Genetic Optimization; Advanced Topics in Genetic Optimization; Chapter 9. Regression and Neural Networks; Overview; Singular-Value Decomposition; Regression in Neural Networks. 
505 8 |a Chapter 10. Designing Feedforward Network ArchitecturesHow Many Hidden Layers?; How Many Hidden Neurons?; How Long Do I Train This Thing???; Chapter 11. Interpreting Weights: How Does This Thing Work?; Features Used by Networks in General; Features Used by a Particular Network; Chapter 12. Probabilistic Neural Networks; Overview; Computational Aspects; Optimizing Sigma; A Sample Program; Bayesian Confidence Measures; Autoassociative Versions; When to Use a Probabilistic Neural Network; Chapter 13. Functional Link Networks; Application to Nonlinear Approximation. 
505 8 |a Mathematics of the Functional Link NetworkWhen to Use a Functional Link Network; Chapter 14. Hybrid Networks; Functional Link Net as a Hidden Layer; Fast Bayesian Confidences; Attention-based Processing; Factorable Problems; Chapter 15. Designing the Training Set; Number of Samples; Borderline Cases; Hidden Bias; Balancing the Classes; Fudging Cases; Chapter 16. Preparing Input Data; General Considerations; Types of Measurements; Is Scaling Always Necessary?; Transformations; Circular Discontinuity; Outliers; Missing Data; Chapter 17. Fuzzy Data and Processing. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a C++ (Computer program language) 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a C++ (Langage de programmation) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a C++ (Computer program language)  |2 fast  |0 (OCoLC)fst00843286 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
776 0 8 |i Print version:  |a Masters, Timothy.  |t Practical neural network recipes in C++  |z 0124790402  |w (OCoLC)762079168 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780080514338/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 919356 
994 |a 92  |b IZTAP