Cargando…

Python 3 text processing with NLTK 3 cookbook : over 80 practical recipes on natural language processing techniques using Python's NLTK 3.0 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Perkins, Jacob, 1982-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Pub., 2014.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn891786402
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 141001s2014 enka o 001 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d DEBBG  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d CEF  |d UKMGB  |d UAB  |d AU@  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB747117  |2 bnb 
016 7 |a 018005421  |2 Uk 
020 |a 9781782167860 
020 |a 1782167862 
020 |a 1782167854 
020 |a 9781782167853 
020 |z 9781782167853 
029 1 |a DEBBG  |b BV042182664 
029 1 |a DEBSZ  |b 417233507 
029 1 |a GBVCP  |b 882840738 
029 1 |a UKMGB  |b 018005421 
035 |a (OCoLC)891786402 
037 |a CL0500000484  |b Safari Books Online 
050 4 |a QA76.73.P98  |b .P475 2014 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Perkins, Jacob,  |d 1982- 
245 1 0 |a Python 3 text processing with NLTK 3 cookbook :  |b over 80 practical recipes on natural language processing techniques using Python's NLTK 3.0 /  |c Jacob Perkins. 
260 |a Birmingham, UK :  |b Packt Pub.,  |c 2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from cover (Safari, viewed Sept. 19, 2014). 
505 0 |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Tokenizing Text and WordNet Basics; Introduction; Tokenizing text into sentences; Tokenizing sentences into words; Tokenizing sentences using regular expressions; Training a sentence tokenizer; Filtering stopwords in a tokenized sentence; Looking up Synsets for a word in WordNet; Looking up lemmas and synonyms in WordNet; Calculating WordNet Synset similarity; Discovering word collocations; Chapter 2: Replacing and Correcting Words; Introduction; Stemming words. 
505 8 |a Lemmatizing words with WordNetReplacing words matching regular expressions; Removing repeating characters; Spelling correction with Enchant; Replacing synonyms; Replacing negations with antonyms; Chapter 3: Creating Custom Corpora; Introduction; Setting up a custom corpus; Creating a wordlist corpus; Creating a part-of-speech tagged word corpus; Creating a chunked phrase corpus; Creating a categorized text corpus; Creating a categorized chunk corpus reader; Lazy corpus loading; Creating a custom corpus view; Creating a MongoDB-backed corpus reader; Corpus editing with file locking. 
505 8 |a Chapter 4: Part-of-speech TaggingIntroduction; Default tagging; Training a unigram part-of-speech tagger; Combining taggers with backoff tagging; Training and combining ngram taggers; Creating a model of likely word tags; Tagging with regular expressions; Affix tagging; Training a Brill tagger; Training the TnT tagger; Using WordNet for tagging; Tagging proper names; Classifier-based tagging; Training a tagger with NLTK-Trainer; Chapter 5: Extracting Chunks; Introduction; Chunking and chinking with regular expressions; Merging and splitting chunks with regular expressions. 
505 8 |a Expanding and removing chunks with regular expressionsPartial parsing with regular expressions; Training a tagger-based chunker; Classification-based chunking; Extracting named entities; Extracting proper noun chunks; Extracting location chunks; Training a named entity chunker; Training a chunker with NLTK-Trainer; Chapter 6: Transforming Chunks and Trees; Introduction; Filtering insignificant words from a sentence; Correcting verb forms; Swapping verb phrases; Swapping noun cardinals; Swapping infinitive phrases; Singularizing plural nouns; Chaining chunk transformations. 
505 8 |a Converting a chunk tree to textFlattening a deep tree; Creating a shallow tree; Converting tree labels; Chapter 7: Text Classification; Introduction; Bag of words feature extraction; Training a Naive Bayes classifier; Training a decision tree classifier; Training a maximum entropy classifier; Training scikit-learn classifiers; Measuring precision and recall of a classifier; Calculating high information words; Combining classifiers with voting; Classifying with multiple binary classifiers; Training a classifier with NLTK-Trainer; Chapter 8: Distributed Processing and Handling Large Datasets. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Text processing (Computer science) 
650 0 |a Natural language processing (Computer science) 
650 2 |a Word Processing 
650 2 |a Natural Language Processing 
650 6 |a Python (Langage de programmation) 
650 6 |a Traitement de texte. 
650 6 |a Traitement automatique des langues naturelles. 
650 7 |a COMPUTERS  |x Natural Language Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Natural language processing (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Text processing (Computer science)  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781782167853/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27082117 
994 |a 92  |b IZTAP