Cargando…

Irradiation embrittlement of reactor pressure vessels (RPVs) in nuclear power plants /

Reactor Pressure Vessels (RPVs) contain the fuel and therefore the reaction at the heart of nuclear power plants. They are a life-determining structural component: if they suffer serious damage, the continued operation of the plant is in jeopardy. This book critically reviews irradiation embrittleme...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Soneda, Naoki (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] : Woodhead Publishing, 2015.
Colección:Woodhead Publishing in energy ; no. 26.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Machine generated contents note: pt. I Reactor pressure vessel (RPV) design and fabrication
  • 1. Reactor pressure vessel (RPV) design and fabrication: the case of the USA / R.K. Nanstad
  • 1.1. Introduction
  • 1.2. American Society of Mechanical Engineers (ASME) Code design practices
  • 1.3. The design process
  • 1.4. Reactor pressure vessel (RPV) materials selection
  • 1.5. Toughness requirements
  • 1.6. RPV fabrication processes
  • 1.7. Welding practices
  • 1.8. References
  • 2. Reactor pressure vessel (RPV) components: processing and properties / Y. Tanaka
  • 2.1. Introduction
  • 2.2. Advances in nuclear reactor pressure vessel (RPV) components
  • 2.3. Materials for nuclear RPVs
  • 2.4. Manufacturing technologies
  • 2.5. Metallurgical and mechanical properties of components
  • 2.6. Conclusions
  • 2.7. References
  • 3. WWER-type reactor pressure vessel (RPV) materials and fabrication / M. Brumovsky
  • 3.1. Introduction
  • 3.2. WWER reactor pressure vessel (RPV) materials
  • 3.3. Production of materials for components and welding techniques
  • 3.4. Future trends
  • 3.5. Sources of further information and advice
  • pt. II Reactor pressure vessel (RPV) embrittlement in operational nuclear power plants
  • 4. Embrittlement of reactor pressure vessels (RPVs) in pressurized water reactors (PWRs) / P. Todeschini
  • 4.1. Introduction
  • 4.2. Characteristics of pressurized water reactor (PWR) reactor pressure vessel (RPV) embrittlement
  • 4.3. US surveillance database
  • 4.4. French surveillance database
  • 4.5. Japanese surveillance database
  • 4.6. Surveillance databases from other countries
  • 4.7. Future trends
  • 4.8. References
  • 5. Embrittlement of reactor pressure vessels (RPVs) in WWER-type reactors / M. Brumovsky
  • 5.1. Introduction
  • 5.2. Characteristics of embrittlement of WWER reactor pressure vessel (RPV) materials
  • 5.3. Trend curves
  • 5.4. WWER surveillance programmes
  • 5.5. RPV annealing in WWER reactors
  • 5.6. RPV annealing technology
  • 5.7. Sources of further information and advice
  • 5.8. References
  • 6. Integrity and embrittlement management of reactor pressure vessels (RPVs) in light-water reactors / R.K. Nanstad
  • 6.1. Introduction
  • 6.2. Parameters governing reactor pressure vessel (RPV) integrity
  • 6.3. Pressure
  • temperature operating limits
  • 6.4. Pressurized thermal shock (PTS)
  • 6.5. Mitigation methods
  • 6.6. Licensing considerations
  • 6.7. References
  • 7. Surveillance of reactor pressure vessel (RPV) embrittlement in Magnox reactors / M.R. Wootton
  • 7.1. Introduction
  • 7.2. History of Magnox reactors
  • 7.3. Reactor pressure vessel (RPV) materials and construction
  • 7.4. Reactor operating rules
  • 7.5. Design of the surveillance schemes
  • 7.6. Early surveillance results
  • 7.7. Dose-damage relationships and intergranular fracture in irradiated submerged-arc welds (SAWs)
  • 7.8. Influence of thermal neutrons
  • 7.9. Validation of toughness assessment methodology by RPV SAW sampling
  • 7.10. Final remarks
  • 7.11. Acknowledgements
  • 7.12. References
  • pt. III Techniques for the evaluation of reactor pressure vessel (RPV) embrittlement
  • 8. Irradiation simulation techniques for the study of reactor pressure vessel (RPV) embrittlement / K. Fukuya
  • 8.1. Introduction
  • 8.2. Test reactor irradiation
  • 8.3. Ion irradiation
  • 8.4. Electron irradiation
  • 8.5. Advantages and limitations
  • 8.6. Future trends
  • 8.7. Sources of further information and advice
  • 8.8. References
  • 9. Microstructural characterisation techniques for the study of reactor pressure vessel (RPV) embrittlement / C.A. English
  • 9.1. Introduction
  • 9.2. Microstructural development and characterisation techniques
  • 9.3. Transmission electron microscopy (TEM)
  • 9.4. Small angle neutron scattering (SANS)
  • 9.5. Atom probe tomography (APT)
  • 9.6. Positron annihilation spectroscopy (PAS)
  • 9.7. Auger electron spectroscopy (AES)
  • 9.8. Other techniques
  • 9.9. Using microstructural analysis to understand the mechanisms of reactor pressure vessel (RPV) embrittlement
  • 9.10. Grain boundary segregation
  • 9.11. Matrix damage
  • 9.12. Solute clusters
  • 9.13. Mechanistic framework to develop dose-damage relationships (DDRs)
  • 9.14. Recent developments and overall summary
  • 9.15. References
  • 10. Evaluating the fracture toughness of reactor pressure vessel (RPV) materials subject to embrittlement / M. Brumovsky
  • 10.1. Introduction
  • 10.2. The development of fracture mechanics
  • 10.3. Plane-strain fracture toughness and crack-arrest toughness
  • 10.4. Current standard of fracture toughness curve
  • 10.5. Effects of irradiation on fracture toughness
  • 10.6. Fracture toughness versus Charpy impact energy
  • 10.7. Heavy Section Steel Technology Program and other international reactor pressure vessel (RPV) research programs
  • 10.8. Advantages and limitations of fracture toughness testing
  • 10.9. Future trends
  • 10.10. References
  • 11. Embrittlement correlation methods to identify trends in embrittlement in reactor pressure vessels (RPVs) / N. Soneda
  • 11.1. Introduction
  • 11.2. Development of the embrittlement correlation method
  • 11.3. Embrittlement correlation methods: USA
  • 11.4. Embrittlement correlation methods: Europe
  • 11.5. Embrittlement correlation methods: Japan
  • 11.6. Conclusions
  • 11.7. References
  • 12. Probabilistic fracture mechanics risk analysis of reactor pressure vessel (RPV) integrity / R.M. Gamble
  • 12.1. Introduction
  • 12.2. Risk evaluation procedures for assessing reactor pressure vessel (RPV) integrity
  • 12.3. Probabilistic fracture mechanics analysis software
  • 12.4. Conditional probability computational procedure
  • 12.5. Example calculations and applications
  • 12.6. Future trends
  • 12.7. References.