Irradiation embrittlement of reactor pressure vessels (RPVs) in nuclear power plants /
Reactor Pressure Vessels (RPVs) contain the fuel and therefore the reaction at the heart of nuclear power plants. They are a life-determining structural component: if they suffer serious damage, the continued operation of the plant is in jeopardy. This book critically reviews irradiation embrittleme...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge [England] :
Woodhead Publishing,
2015.
|
Colección: | Woodhead Publishing in energy ;
no. 26. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Machine generated contents note: pt. I Reactor pressure vessel (RPV) design and fabrication
- 1. Reactor pressure vessel (RPV) design and fabrication: the case of the USA / R.K. Nanstad
- 1.1. Introduction
- 1.2. American Society of Mechanical Engineers (ASME) Code design practices
- 1.3. The design process
- 1.4. Reactor pressure vessel (RPV) materials selection
- 1.5. Toughness requirements
- 1.6. RPV fabrication processes
- 1.7. Welding practices
- 1.8. References
- 2. Reactor pressure vessel (RPV) components: processing and properties / Y. Tanaka
- 2.1. Introduction
- 2.2. Advances in nuclear reactor pressure vessel (RPV) components
- 2.3. Materials for nuclear RPVs
- 2.4. Manufacturing technologies
- 2.5. Metallurgical and mechanical properties of components
- 2.6. Conclusions
- 2.7. References
- 3. WWER-type reactor pressure vessel (RPV) materials and fabrication / M. Brumovsky
- 3.1. Introduction
- 3.2. WWER reactor pressure vessel (RPV) materials
- 3.3. Production of materials for components and welding techniques
- 3.4. Future trends
- 3.5. Sources of further information and advice
- pt. II Reactor pressure vessel (RPV) embrittlement in operational nuclear power plants
- 4. Embrittlement of reactor pressure vessels (RPVs) in pressurized water reactors (PWRs) / P. Todeschini
- 4.1. Introduction
- 4.2. Characteristics of pressurized water reactor (PWR) reactor pressure vessel (RPV) embrittlement
- 4.3. US surveillance database
- 4.4. French surveillance database
- 4.5. Japanese surveillance database
- 4.6. Surveillance databases from other countries
- 4.7. Future trends
- 4.8. References
- 5. Embrittlement of reactor pressure vessels (RPVs) in WWER-type reactors / M. Brumovsky
- 5.1. Introduction
- 5.2. Characteristics of embrittlement of WWER reactor pressure vessel (RPV) materials
- 5.3. Trend curves
- 5.4. WWER surveillance programmes
- 5.5. RPV annealing in WWER reactors
- 5.6. RPV annealing technology
- 5.7. Sources of further information and advice
- 5.8. References
- 6. Integrity and embrittlement management of reactor pressure vessels (RPVs) in light-water reactors / R.K. Nanstad
- 6.1. Introduction
- 6.2. Parameters governing reactor pressure vessel (RPV) integrity
- 6.3. Pressure
- temperature operating limits
- 6.4. Pressurized thermal shock (PTS)
- 6.5. Mitigation methods
- 6.6. Licensing considerations
- 6.7. References
- 7. Surveillance of reactor pressure vessel (RPV) embrittlement in Magnox reactors / M.R. Wootton
- 7.1. Introduction
- 7.2. History of Magnox reactors
- 7.3. Reactor pressure vessel (RPV) materials and construction
- 7.4. Reactor operating rules
- 7.5. Design of the surveillance schemes
- 7.6. Early surveillance results
- 7.7. Dose-damage relationships and intergranular fracture in irradiated submerged-arc welds (SAWs)
- 7.8. Influence of thermal neutrons
- 7.9. Validation of toughness assessment methodology by RPV SAW sampling
- 7.10. Final remarks
- 7.11. Acknowledgements
- 7.12. References
- pt. III Techniques for the evaluation of reactor pressure vessel (RPV) embrittlement
- 8. Irradiation simulation techniques for the study of reactor pressure vessel (RPV) embrittlement / K. Fukuya
- 8.1. Introduction
- 8.2. Test reactor irradiation
- 8.3. Ion irradiation
- 8.4. Electron irradiation
- 8.5. Advantages and limitations
- 8.6. Future trends
- 8.7. Sources of further information and advice
- 8.8. References
- 9. Microstructural characterisation techniques for the study of reactor pressure vessel (RPV) embrittlement / C.A. English
- 9.1. Introduction
- 9.2. Microstructural development and characterisation techniques
- 9.3. Transmission electron microscopy (TEM)
- 9.4. Small angle neutron scattering (SANS)
- 9.5. Atom probe tomography (APT)
- 9.6. Positron annihilation spectroscopy (PAS)
- 9.7. Auger electron spectroscopy (AES)
- 9.8. Other techniques
- 9.9. Using microstructural analysis to understand the mechanisms of reactor pressure vessel (RPV) embrittlement
- 9.10. Grain boundary segregation
- 9.11. Matrix damage
- 9.12. Solute clusters
- 9.13. Mechanistic framework to develop dose-damage relationships (DDRs)
- 9.14. Recent developments and overall summary
- 9.15. References
- 10. Evaluating the fracture toughness of reactor pressure vessel (RPV) materials subject to embrittlement / M. Brumovsky
- 10.1. Introduction
- 10.2. The development of fracture mechanics
- 10.3. Plane-strain fracture toughness and crack-arrest toughness
- 10.4. Current standard of fracture toughness curve
- 10.5. Effects of irradiation on fracture toughness
- 10.6. Fracture toughness versus Charpy impact energy
- 10.7. Heavy Section Steel Technology Program and other international reactor pressure vessel (RPV) research programs
- 10.8. Advantages and limitations of fracture toughness testing
- 10.9. Future trends
- 10.10. References
- 11. Embrittlement correlation methods to identify trends in embrittlement in reactor pressure vessels (RPVs) / N. Soneda
- 11.1. Introduction
- 11.2. Development of the embrittlement correlation method
- 11.3. Embrittlement correlation methods: USA
- 11.4. Embrittlement correlation methods: Europe
- 11.5. Embrittlement correlation methods: Japan
- 11.6. Conclusions
- 11.7. References
- 12. Probabilistic fracture mechanics risk analysis of reactor pressure vessel (RPV) integrity / R.M. Gamble
- 12.1. Introduction
- 12.2. Risk evaluation procedures for assessing reactor pressure vessel (RPV) integrity
- 12.3. Probabilistic fracture mechanics analysis software
- 12.4. Conditional probability computational procedure
- 12.5. Example calculations and applications
- 12.6. Future trends
- 12.7. References.