Cargando…

Practical machine learning : a new look at anomaly detection /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dunning, Ted, 1956-
Otros Autores: Friedman, B. Ellen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, 2014.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn889970413
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 140904s2014 caua o 000 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d E7B  |d CUS  |d OCLCO  |d DEBBG  |d DEBSZ  |d COO  |d REB  |d OCLCQ  |d OCLCF  |d OCLCQ  |d TXI  |d FEM  |d OCLCQ  |d CEF  |d UAB  |d AU@  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 908281398  |a 968128442  |a 969051280 
020 |a 1491911603 
020 |a 9781491911600 
020 |a 9781491914151 
020 |a 1491914157 
020 |a 9781491914182  |q (e-book) 
020 |a 1491914181  |q (e-book) 
020 |a 9781491914175 
020 |a 1491914173 
020 |z 9781491911600 
029 1 |a DEBBG  |b BV042182556 
029 1 |a DEBSZ  |b 41723239X 
029 1 |a GBVCP  |b 804972036 
035 |a (OCoLC)889970413  |z (OCoLC)908281398  |z (OCoLC)968128442  |z (OCoLC)969051280 
037 |a CL0500000477  |b Safari Books Online 
050 4 |a Q325.5  |b .D866 2014 
082 0 4 |a 005.8  |2 23 
049 |a UAMI 
100 1 |a Dunning, Ted,  |d 1956- 
245 1 0 |a Practical machine learning :  |b a new look at anomaly detection /  |c Ted Dunning, Ellen Friedman. 
260 |a Sebastopol, CA :  |b O'Reilly Media,  |c 2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
588 0 |a Online resource; title from title page (Safari, viewed Aug. 29, 2014). 
520 8 |a Annotation  |b Finding Data Anomalies You Didn't Know to Look ForAnomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what suspects youre looking for. This OReilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project. Use probabilistic models to predict whats normal and contrast that to what you observeSet an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithmEstablish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic modelUse historical data to discover anomalies in sporadic event streams, such as web trafficLearn how to use deviations in expected behavior to trigger fraud alerts. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Anomaly detection (Computer security) 
650 6 |a Apprentissage automatique. 
650 6 |a Détection d'anomalies (Sécurité informatique) 
650 7 |a Anomaly detection (Computer security)  |2 fast  |0 (OCoLC)fst01739215 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Friedman, B. Ellen. 
776 0 8 |i Print version:  |a Dunning, Ted.  |t Practical machine learning : a new look at anomaly detection.  |d Sebastopol, California : O'Reilly, ©2014  |h iv, 58 pages  |z 9781491911600 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491914151/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ebrary  |b EBRY  |n ebr10908002 
994 |a 92  |b IZTAP