Cargando…

Data analysis on streams /

"Analyzing real-time data poses special kinds of challenges, such as dealing with large event rates, aggregating activities for millions of objects in parallel, and processing queries with subsecond latency. In addition, the set of available tools and approaches to deal with streaming data is c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Braun, Mikio
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2014.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000Ia 4500
001 OR_ocn888036021
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 140820s2014 xx 047 o vleng d
040 |a UMI  |b eng  |e pn  |c UMI  |d OCLCF  |d OCLCQ  |d UAB  |d ERF  |d OCLCO 
035 |a (OCoLC)888036021 
037 |a CL0500000466  |b Safari Books Online 
050 4 |a QA76.9.D343 
049 |a UAMI 
100 1 |a Braun, Mikio. 
245 1 0 |a Data analysis on streams /  |c with Mikio Braun. 
260 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2014. 
300 |a 1 online resource (1 streaming video file (46 min., 55 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from title screen (viewed Aug. 13, 2014). 
511 0 |a Presenter, Mikio Braun. 
520 |a "Analyzing real-time data poses special kinds of challenges, such as dealing with large event rates, aggregating activities for millions of objects in parallel, and processing queries with subsecond latency. In addition, the set of available tools and approaches to deal with streaming data is currently highly fragmented. In this webcast, Mikio Braun will discuss building reliable and efficient solutions for real-time data analysis, including approaches that rely on scaling--both batch-oriented (such as MapReduce), and stream-oriented (such as Apache Storm and Apache Spark). He will also focus on use of approximative algorithms (used heavily in streamdrill) for counting, trending, and outlier detection."--Resource description page. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Apache Hadoop. 
630 0 7 |a Apache Hadoop.  |2 fast  |0 (OCoLC)fst01911570 
650 0 |a Data mining. 
650 0 |a Computer algorithms. 
650 0 |a Mathematical statistics. 
650 2 |a Data Mining 
650 2 |a Algorithms 
650 6 |a Exploration de données (Informatique) 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Mathematical statistics.  |2 fast  |0 (OCoLC)fst01012127 
655 4 |a Electronic videos. 
700 1 |a Braun, Mikio. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491910610/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP