|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
OR_ocn884594599 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
140703t20142014enka o 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d UMI
|d DEBBG
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCF
|d OCLCO
|d YDXCP
|d OCLCO
|d OCLCQ
|d OCLCO
|d D6H
|d OCLCO
|d K6U
|d OCLCQ
|d AGLDB
|d OCLCQ
|d CCO
|d PIFFA
|d FVL
|d OCLCQ
|d U3W
|d REB
|d STF
|d CEF
|d NLE
|d INT
|d VT2
|d OCLCQ
|d UKMGB
|d WYU
|d G3B
|d TKN
|d OCLCQ
|d UAB
|d AU@
|d UKAHL
|d HS0
|d OCLCO
|d QGK
|d OCLCQ
|d OCLCO
|
016 |
7 |
|
|a 018006984
|2 Uk
|
019 |
|
|
|a 884966284
|a 907251042
|a 961696026
|a 962729865
|a 1259113339
|
020 |
|
|
|a 9781783983919
|q (e-book)
|
020 |
|
|
|a 1783983914
|q (e-book)
|
020 |
|
|
|a 1783983906
|
020 |
|
|
|a 9781783983902
|
020 |
|
|
|z 9781783983902
|
029 |
1 |
|
|a AU@
|b 000056926728
|
029 |
1 |
|
|a CHNEW
|b 000698574
|
029 |
1 |
|
|a DEBBG
|b BV042182150
|
029 |
1 |
|
|a DEBSZ
|b 417228260
|
029 |
1 |
|
|a GBVCP
|b 882840320
|
029 |
1 |
|
|a UKMGB
|b 018006984
|
035 |
|
|
|a (OCoLC)884594599
|z (OCoLC)884966284
|z (OCoLC)907251042
|z (OCoLC)961696026
|z (OCoLC)962729865
|z (OCoLC)1259113339
|
037 |
|
|
|a CL0500000456
|b Safari Books Online
|
050 |
|
4 |
|a QA76.73.P98
|b .I375 2014eb
|
082 |
0 |
4 |
|a 005.133
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Idris, Ivan,
|e author.
|
245 |
1 |
0 |
|a Learning NumPy Array :
|b supercharge your scientific Python computations by understanding how to use the NumPy library effectively /
|c Ivan Idris ; Duraid Fatouhi, cover image.
|
264 |
|
1 |
|a Birmingham, England :
|b Packt Publishing,
|c 2014.
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (164 pages) :
|b illustrations (some color).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
490 |
1 |
|
|a Community experience distilled
|
588 |
0 |
|
|a Online resource; title from PDF title page (ebrary, viewed July 3, 2014).
|
505 |
0 |
|
|a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with NumPy; Python; Installing NumPy, Matplotlib, SciPy, and IPython on Windows; Installing NumPy, Matplotlib, SciPy, and IPython on Linux; Installing NumPy, Matplotlib, and SciPy on Mac OS X; Building from source; NumPy arrays; Adding arrays; Online resources and help; Summary; Chapter 2: NumPy Basics; The NumPy array object; The advantages of using NumPy arrays; Creating a multidimensional array; Selecting array elements; NumPy numerical types
|
505 |
8 |
|
|a Data type objectsCharacter codes; dtype constructors; dtype attributes; Creating a record data type; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting arrays; Array attributes; Converting arrays; Creating views and copies; Fancy indexing; Indexing with a list of locations; Indexing arrays with Booleans; Stride tricks for Sudoku; Broadcasting arrays; Summary; Chapter 3: Basic Data Analysis with NumPy; Introducing the dataset; Determining the daily temperature range; Looking for evidence of global warming; Comparing solar radiation versus temperature
|
505 |
8 |
|
|a Analyzing wind directionAnalyzing wind speed; Analyzing precipitation and sunshine duration; Analyzing monthly precipitation in De Bilt; Analyzing atmospheric pressure in De Bilt; Analyzing atmospheric humidity in De Bilt; Summary; Chapter 4: Simple Predictive Analytics with NumPy; Examining autocorrelation of average temperature with pandas; Describing data with pandas DataFrames; Correlating weather and stocks with pandas; Predicting temperature; Autoregressive model with lag 1; Autoregressive model with lag 2; Analysing intra-year daily average temperatures
|
505 |
8 |
|
|a Introducing the day-of-the-year temperature modelModeling temperature with the SciPy leastsq function; Day-of-year temperature take two; Moving-average temperature model with lag 1; The Autoregressive Moving Average temperature model; The time-dependent temperature mean adjusted autoregressive model; Outliers analysis of average De Bilt temperature; Using more robust statistics; Summary; Chapter 5: Signal Processing Techniques; Introducing the Sunspot data; Sifting continued; Moving averages; Smoothing functions; Forecasting with an ARMA model; Filtering a signal; Designing the filter
|
505 |
8 |
|
|a Demonstrating cointegrationSummary; Chapter 6: Profiling, Debugging, and Testing; Assert functions; The assert_almost_equal function; Approximately equal arrays; The assert_array_almost_equal function; Profiling a program with IPython; Debugging with IPython; Performing Unit tests; Nose tests decorators; Summary; Chapter 7: The Scientific Python Ecosystem; Numerical integration; Interpolation; Using Cython with NumPy; Clustering stocks with scikit-learn; Detecting corners; Comparing NumPy to Blaze; Summary; Index
|
520 |
|
|
|a A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.
|
546 |
|
|
|a English.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Numerical analysis
|x Data processing.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Analyse numérique
|x Informatique.
|
650 |
|
7 |
|a COMPUTERS
|x Databases
|x General.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Programming Languages
|x SQL.
|2 bisacsh
|
650 |
|
7 |
|a Numerical analysis
|x Data processing
|2 fast
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
700 |
1 |
|
|a Fatouhi, Duraid,
|e cover designer.
|
776 |
0 |
8 |
|i Print version:
|a Idris, Ivan.
|t Learning NumPy Array : supercharge your scientific Python computations by understanding how to use the NumPy library effectively.
|d Birmingham, England : Packt Publishing, ©2014
|h 145 pages
|z 9781783983902
|
830 |
|
0 |
|a Community experience distilled.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781783983902/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26843971
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10886395
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11889087
|
994 |
|
|
|a 92
|b IZTAP
|