Cargando…

Learning NumPy Array : supercharge your scientific Python computations by understanding how to use the NumPy library effectively /

A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Idris, Ivan (Autor)
Otros Autores: Fatouhi, Duraid (Diseñador de portada)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, England : Packt Publishing, 2014.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_ocn884594599
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 140703t20142014enka o 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d UMI  |d DEBBG  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCO  |d YDXCP  |d OCLCO  |d OCLCQ  |d OCLCO  |d D6H  |d OCLCO  |d K6U  |d OCLCQ  |d AGLDB  |d OCLCQ  |d CCO  |d PIFFA  |d FVL  |d OCLCQ  |d U3W  |d REB  |d STF  |d CEF  |d NLE  |d INT  |d VT2  |d OCLCQ  |d UKMGB  |d WYU  |d G3B  |d TKN  |d OCLCQ  |d UAB  |d AU@  |d UKAHL  |d HS0  |d OCLCO  |d QGK  |d OCLCQ  |d OCLCO 
016 7 |a 018006984  |2 Uk 
019 |a 884966284  |a 907251042  |a 961696026  |a 962729865  |a 1259113339 
020 |a 9781783983919  |q (e-book) 
020 |a 1783983914  |q (e-book) 
020 |a 1783983906 
020 |a 9781783983902 
020 |z 9781783983902 
029 1 |a AU@  |b 000056926728 
029 1 |a CHNEW  |b 000698574 
029 1 |a DEBBG  |b BV042182150 
029 1 |a DEBSZ  |b 417228260 
029 1 |a GBVCP  |b 882840320 
029 1 |a UKMGB  |b 018006984 
035 |a (OCoLC)884594599  |z (OCoLC)884966284  |z (OCoLC)907251042  |z (OCoLC)961696026  |z (OCoLC)962729865  |z (OCoLC)1259113339 
037 |a CL0500000456  |b Safari Books Online 
050 4 |a QA76.73.P98  |b .I375 2014eb 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Idris, Ivan,  |e author. 
245 1 0 |a Learning NumPy Array :  |b supercharge your scientific Python computations by understanding how to use the NumPy library effectively /  |c Ivan Idris ; Duraid Fatouhi, cover image. 
264 1 |a Birmingham, England :  |b Packt Publishing,  |c 2014. 
264 4 |c ©2014 
300 |a 1 online resource (164 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Community experience distilled 
588 0 |a Online resource; title from PDF title page (ebrary, viewed July 3, 2014). 
505 0 |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with NumPy; Python; Installing NumPy, Matplotlib, SciPy, and IPython on Windows; Installing NumPy, Matplotlib, SciPy, and IPython on Linux; Installing NumPy, Matplotlib, and SciPy on Mac OS X; Building from source; NumPy arrays; Adding arrays; Online resources and help; Summary; Chapter 2: NumPy Basics; The NumPy array object; The advantages of using NumPy arrays; Creating a multidimensional array; Selecting array elements; NumPy numerical types 
505 8 |a Data type objectsCharacter codes; dtype constructors; dtype attributes; Creating a record data type; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting arrays; Array attributes; Converting arrays; Creating views and copies; Fancy indexing; Indexing with a list of locations; Indexing arrays with Booleans; Stride tricks for Sudoku; Broadcasting arrays; Summary; Chapter 3: Basic Data Analysis with NumPy; Introducing the dataset; Determining the daily temperature range; Looking for evidence of global warming; Comparing solar radiation versus temperature 
505 8 |a Analyzing wind directionAnalyzing wind speed; Analyzing precipitation and sunshine duration; Analyzing monthly precipitation in De Bilt; Analyzing atmospheric pressure in De Bilt; Analyzing atmospheric humidity in De Bilt; Summary; Chapter 4: Simple Predictive Analytics with NumPy; Examining autocorrelation of average temperature with pandas; Describing data with pandas DataFrames; Correlating weather and stocks with pandas; Predicting temperature; Autoregressive model with lag 1; Autoregressive model with lag 2; Analysing intra-year daily average temperatures 
505 8 |a Introducing the day-of-the-year temperature modelModeling temperature with the SciPy leastsq function; Day-of-year temperature take two; Moving-average temperature model with lag 1; The Autoregressive Moving Average temperature model; The time-dependent temperature mean adjusted autoregressive model; Outliers analysis of average De Bilt temperature; Using more robust statistics; Summary; Chapter 5: Signal Processing Techniques; Introducing the Sunspot data; Sifting continued; Moving averages; Smoothing functions; Forecasting with an ARMA model; Filtering a signal; Designing the filter 
505 8 |a Demonstrating cointegrationSummary; Chapter 6: Profiling, Debugging, and Testing; Assert functions; The assert_almost_equal function; Approximately equal arrays; The assert_array_almost_equal function; Profiling a program with IPython; Debugging with IPython; Performing Unit tests; Nose tests decorators; Summary; Chapter 7: The Scientific Python Ecosystem; Numerical integration; Interpolation; Using Cython with NumPy; Clustering stocks with scikit-learn; Detecting corners; Comparing NumPy to Blaze; Summary; Index 
520 |a A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python. 
546 |a English. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Numerical analysis  |x Data processing. 
650 6 |a Python (Langage de programmation) 
650 6 |a Analyse numérique  |x Informatique. 
650 7 |a COMPUTERS  |x Databases  |x General.  |2 bisacsh 
650 7 |a COMPUTERS  |x Programming Languages  |x SQL.  |2 bisacsh 
650 7 |a Numerical analysis  |x Data processing  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Fatouhi, Duraid,  |e cover designer. 
776 0 8 |i Print version:  |a Idris, Ivan.  |t Learning NumPy Array : supercharge your scientific Python computations by understanding how to use the NumPy library effectively.  |d Birmingham, England : Packt Publishing, ©2014  |h 145 pages  |z 9781783983902 
830 0 |a Community experience distilled. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781783983902/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26843971 
938 |a ebrary  |b EBRY  |n ebr10886395 
938 |a YBP Library Services  |b YANK  |n 11889087 
994 |a 92  |b IZTAP