Cargando…

Thinking with data /

"Data Science draws heavily on statistics, machine learning and software engineering, but these disciplines aren't much help for coming up with the right problems to solve. Thankfully, other people have already given this area much thought. Whether you are building data products, instrumen...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shron, Max
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Sebastopol, CA] : O'Reilly, 2014.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000Ia 4500
001 OR_ocn883661822
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 140715s2014 cau054 o vleng d
040 |a UMI  |b eng  |e pn  |c UMI  |d OCLCQ  |d OCLCF  |d UAB  |d ERF  |d OCLCO 
035 |a (OCoLC)883661822 
037 |a CL0500000458  |b Safari Books Online 
050 4 |a QA76.9.D343 
049 |a UAMI 
100 1 |a Shron, Max. 
245 1 0 |a Thinking with data /  |c with Max Shron. 
260 |a [Sebastopol, CA] :  |b O'Reilly,  |c 2014. 
300 |a 1 online resource (1 streaming video file (53 min., 49 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Max Shron. 
500 |a Title from title screen (viewed July 9, 2014). 
518 |a O'Reilly webcast March 13, 2014. 
520 |a "Data Science draws heavily on statistics, machine learning and software engineering, but these disciplines aren't much help for coming up with the right problems to solve. Thankfully, other people have already given this area much thought. Whether you are building data products, instrumenting a business, or writing reports, there are useful ideas from other disciplines that will improve your ability to frame problems, scope projects, and communicate complex results. This webcast examines a framework for incorporating ideas from other fields (like design, argument studies, and consulting) into Data Science. In the process we will explore a number of ideas, including the four things to figure out before starting any data project and how to use common patterns of argument to refine any idea."--Resource description page. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a Data structures (Computer science) 
650 0 |a Business intelligence  |x Data processing. 
650 0 |a Project management. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a Structures de données (Informatique) 
650 6 |a Gestion de projet. 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Data structures (Computer science)  |2 fast  |0 (OCoLC)fst00887978 
650 7 |a Project management.  |2 fast  |0 (OCoLC)fst01078797 
655 4 |a Electronic videos. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491909003/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP