Cargando…

Big data analytics beyond Hadoop : real-time applications with Storm, Spark, and more Hadoop alternatives /

Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning. When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Agneeswaram, Vijay Srinivas
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Upper Saddle River, NJ : Pearson Education, ©2014.
Colección:FT Press Analytics Ser.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_ocn881383303
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 140613s2014 njua ob 001 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d DEBBG  |d DEBSZ  |d COO  |d VT2  |d REB  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d YDX  |d N$T  |d CEF  |d AU@  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9780133838220  |q (electronic bk.) 
020 |a 0133838226  |q (electronic bk.) 
020 |a 0133837947 
020 |a 9780133837940 
020 |z 9780133838268 
020 |z 0133838269 
020 |z 0133837947 
020 |z 9780133837940 
024 3 |a 9780133837940 
029 1 |a DEBBG  |b BV042033096 
029 1 |a DEBSZ  |b 414185811 
029 1 |a GBVCP  |b 796787786 
035 |a (OCoLC)881383303 
037 |a CL0500000446  |b Safari Books Online 
050 4 |a QA76  |b .A464 2014 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3/12  |2 23 
049 |a UAMI 
100 1 |a Agneeswaram, Vijay Srinivas. 
245 1 0 |a Big data analytics beyond Hadoop :  |b real-time applications with Storm, Spark, and more Hadoop alternatives /  |c Vijay Srinivas Agneeswaran. 
260 |a Upper Saddle River, NJ :  |b Pearson Education,  |c ©2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a FT Press Analytics Ser. 
588 0 |a Online resource; title from title page (Safari, viewed June 06, 2014). 
504 |a Includes bibliographical references and index. 
520 8 |a Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning. When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited for, especially real-time analytics and contexts requiring the use of iterative machine learning algorithms. Fortunately, several powerful new technologies have been developed specifically for use cases such as these. Big Data Analytics Beyond Hadoop is the first guide specifically designed to help you take the next steps beyond Hadoop. Dr. Vijay Srinivas Agneeswaran introduces the breakthrough Berkeley Data Analysis Stack (BDAS) in detail, including its motivation, design, architecture, Mesos cluster management, performance, and more. He presents realistic use cases and up-to-date example code for:Spark, the next generation in-memory computing technology from UC BerkeleyStorm, the parallel real-time Big Data analytics technology from TwitterGraphLab, the next-generation graph processing paradigm from CMU and the University of Washington (with comparisons to alternatives such as Pregel and Piccolo)Halo also offers architectural and design guidance and code sketches for scaling machine learning algorithms to Big Data, and then realizing them in real-time. He concludes by previewing emerging trends, including real-time video analytics, SDNs, and even Big Data governance, security, and privacy issues. He identifies intriguing startups and new research possibilities, including BDAS extensions and cutting-edge model-driven analytics. Big Data Analytics Beyond Hadoop is an indispensable resource for everyone who wants to reach the cutting edge of Big Data analytics, and stay there: practitioners, architects, programmers, data scientists, researchers, startup entrepreneurs, and advanced students. 
505 0 |a 1. Introduction: Why look beyond Hadoop map-reduce? -- 2. What is the Berkeley data analytics stack (BDAS)? -- 3. Realizing machine learning algorithms with spark -- 4. Realizing machine learning algorithms in real time -- 5. Graph processing paradigms -- 6. Conclusions: big data analytics beyond Hadoop map-reduce -- Appendix A. Code sketches. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Apache Hadoop. 
630 0 7 |a Apache Hadoop  |2 fast 
650 0 |a Electronic data processing. 
650 0 |a Big data. 
650 0 |a Data mining. 
650 0 |a Business intelligence. 
650 0 |a Information storage and retrieval systems. 
650 2 |a Data Mining 
650 2 |a Information Systems 
650 6 |a Données volumineuses. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Systèmes d'information. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Big data  |2 fast 
650 7 |a Business intelligence  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Electronic data processing  |2 fast 
650 7 |a Information storage and retrieval systems  |2 fast 
830 0 |a FT Press Analytics Ser. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780133838268/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1600622 
938 |a YBP Library Services  |b YANK  |n 14856066 
994 |a 92  |b IZTAP