|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_ocn881065009 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
140604s2014 nju ob 001 0 eng |
010 |
|
|
|a 2014021985
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d YDX
|d N$T
|d EBLCP
|d IDEBK
|d OCLCF
|d YDXCP
|d E7B
|d CDX
|d RECBK
|d COO
|d DG1
|d DEBSZ
|d B24X7
|d DEBBG
|d OCLCQ
|d COCUF
|d MOR
|d CCO
|d LIP
|d PIFAG
|d ZCU
|d LIV
|d MERUC
|d OCLCQ
|d U3W
|d BUF
|d OCLCQ
|d STF
|d ICG
|d INT
|d VT2
|d AU@
|d OCLCQ
|d TKN
|d OCLCQ
|d DKC
|d OCLCQ
|d UMI
|d BRF
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 961611919
|a 962663050
|a 992918069
|a 1055378997
|a 1081229249
|a 1129585450
|
020 |
|
|
|a 9781118884485
|q (ePub)
|
020 |
|
|
|a 1118884485
|q (ePub)
|
020 |
|
|
|a 9781118884478
|q (Adobe PDF)
|
020 |
|
|
|a 1118884477
|q (Adobe PDF)
|
020 |
|
|
|a 9781118884614
|
020 |
|
|
|a 1118884612
|
020 |
|
|
|a 9781322094762
|
020 |
|
|
|a 1322094764
|
020 |
|
|
|z 9781118362082
|q (hardback)
|
020 |
|
|
|z 111836208X
|
029 |
1 |
|
|a AU@
|b 000053596520
|
029 |
1 |
|
|a AU@
|b 000053790775
|
029 |
1 |
|
|a AU@
|b 000062004765
|
029 |
1 |
|
|a AU@
|b 000067101051
|
029 |
1 |
|
|a CHBIS
|b 010441678
|
029 |
1 |
|
|a CHNEW
|b 000943205
|
029 |
1 |
|
|a CHVBK
|b 480234256
|
029 |
1 |
|
|a DEBBG
|b BV042989995
|
029 |
1 |
|
|a DEBBG
|b BV043396847
|
029 |
1 |
|
|a DEBBG
|b BV044070148
|
029 |
1 |
|
|a DEBSZ
|b 422918725
|
029 |
1 |
|
|a DEBSZ
|b 431760268
|
029 |
1 |
|
|a DEBSZ
|b 449447154
|
029 |
1 |
|
|a DEBSZ
|b 485049252
|
029 |
1 |
|
|a NZ1
|b 15910051
|
035 |
|
|
|a (OCoLC)881065009
|z (OCoLC)961611919
|z (OCoLC)962663050
|z (OCoLC)992918069
|z (OCoLC)1055378997
|z (OCoLC)1081229249
|z (OCoLC)1129585450
|
037 |
|
|
|a CL0501000083
|b Safari Books Online
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a Q325.6
|
072 |
|
7 |
|a MAT
|x 003000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
082 |
0 |
0 |
|a 519.3
|2 23
|
084 |
|
|
|a TEC008000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Schwartz, Howard M.,
|e editor.
|
245 |
1 |
0 |
|a Multi-agent machine learning :
|b a reinforcement approach /
|c Howard M. Schwartz.
|
264 |
|
1 |
|a Hoboken, NJ :
|b John Wiley & Sons,
|c [2014]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a "Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"--
|c Provided by publisher
|
520 |
|
|
|a "Provide an in-depth coverage of multi-player, differential games and Gam theory"--
|c Provided by publisher
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher.
|
505 |
0 |
|
|a Cover; Title Page; Copyright; Preface; References; Chapter 1: A Brief Review of Supervised Learning; 1.1 Least Squares Estimates; 1.2 Recursive Least Squares; 1.3 Least Mean Squares; 1.4 Stochastic Approximation; References; Chapter 2: Single-Agent Reinforcement Learning; 2.1 Introduction; 2.2 n-Armed Bandit Problem; 2.3 The Learning Structure; 2.4 The Value Function; 2.5 The Optimal Value Functions; 2.6 Markov Decision Processes; 2.7 Learning Value Functions; 2.8 Policy Iteration; 2.9 Temporal Difference Learning; 2.10 TD Learning of the State-Action Function; 2.11 Q-Learning.
|
505 |
8 |
|
|a 2.12 Eligibility TracesReferences; Chapter 3: Learning in Two-Player Matrix Games; 3.1 Matrix Games; 3.2 Nash Equilibria in Two-Player Matrix Games; 3.3 Linear Programming in Two-Player Zero-Sum Matrix Games; 3.4 The Learning Algorithms; 3.5 Gradient Ascent Algorithm; 3.6 WoLF-IGA Algorithm; 3.7 Policy Hill Climbing (PHC); 3.8 WoLF-PHC Algorithm; 3.9 Decentralized Learning in Matrix Games; 3.10 Learning Automata; 3.11 Linear Reward-Inaction Algorithm; 3.12 Linear Reward-Penalty Algorithm; 3.13 The Lagging Anchor Algorithm; 3.14 L R-I Lagging Anchor Algorithm; References.
|
505 |
8 |
|
|a Chapter 4: Learning in Multiplayer Stochastic Games4.1 Introduction; 4.2 Multiplayer Stochastic Games; 4.3 Minimax-Q Algorithm; 4.4 Nash Q-Learning; 4.5 The Simplex Algorithm; 4.6 The Lemke-Howson Algorithm; 4.7 Nash-Q Implementation; 4.8 Friend-or-Foe Q-Learning; 4.9 Infinite Gradient Ascent; 4.10 Policy Hill Climbing; 4.11 WoLF-PHC Algorithm; 4.12 Guarding a Territory Problem in a Grid World; 4.13 Extension of L R-I Lagging Anchor Algorithm to Stochastic Games; 4.14 The Exponential Moving-Average Q-Learning (EMA Q-Learning) Algorithm.
|
505 |
8 |
|
|a 5.12 Reward Shaping in the Differential Game of Guarding a Territory5.13 Simulation Results; References; Chapter 6: Swarm Intelligence and the Evolution of Personality Traits; 6.1 Introduction; 6.2 The Evolution of Swarm Intelligence; 6.3 Representation of the Environment; 6.4 Swarm-Based Robotics in Terms of Personalities; 6.5 Evolution of Personality Traits; 6.6 Simulation Framework; 6.7 A Zero-Sum Game Example; 6.8 Implementation for Next Sections; 6.9 Robots Leaving a Room; 6.10 Tracking a Target; 6.11 Conclusion; References; Index; End User License Agreement.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Reinforcement learning.
|
650 |
|
0 |
|a Differential games.
|
650 |
|
0 |
|a Swarm intelligence.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
6 |
|a Apprentissage par renforcement (Intelligence artificielle)
|
650 |
|
6 |
|a Jeux différentiels.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Electronics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Differential games
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Reinforcement learning
|2 fast
|
650 |
|
7 |
|a Swarm intelligence
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Schwartz, Howard M.
|t Multi-agent machine learning.
|d Hoboken, NJ : John Wiley & Sons, [2014]
|z 9781118362082
|w (DLC) 2014016950
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781118362082/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Books 24x7
|b B247
|n bks00072864
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 29749967
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1775207
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4039542
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10921255
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 838166
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis29749967
|
938 |
|
|
|a Recorded Books, LLC
|b RECE
|n rbeEB00582647
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11419724
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12057363
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12677638
|
994 |
|
|
|a 92
|b IZTAP
|