Cargando…

Multi-agent machine learning : a reinforcement approach /

"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Schwartz, Howard M. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, [2014]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn881065009
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 140604s2014 nju ob 001 0 eng
010 |a  2014021985 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d N$T  |d EBLCP  |d IDEBK  |d OCLCF  |d YDXCP  |d E7B  |d CDX  |d RECBK  |d COO  |d DG1  |d DEBSZ  |d B24X7  |d DEBBG  |d OCLCQ  |d COCUF  |d MOR  |d CCO  |d LIP  |d PIFAG  |d ZCU  |d LIV  |d MERUC  |d OCLCQ  |d U3W  |d BUF  |d OCLCQ  |d STF  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UMI  |d BRF  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 961611919  |a 962663050  |a 992918069  |a 1055378997  |a 1081229249  |a 1129585450 
020 |a 9781118884485  |q (ePub) 
020 |a 1118884485  |q (ePub) 
020 |a 9781118884478  |q (Adobe PDF) 
020 |a 1118884477  |q (Adobe PDF) 
020 |a 9781118884614 
020 |a 1118884612 
020 |a 9781322094762 
020 |a 1322094764 
020 |z 9781118362082  |q (hardback) 
020 |z 111836208X 
029 1 |a AU@  |b 000053596520 
029 1 |a AU@  |b 000053790775 
029 1 |a AU@  |b 000062004765 
029 1 |a AU@  |b 000067101051 
029 1 |a CHBIS  |b 010441678 
029 1 |a CHNEW  |b 000943205 
029 1 |a CHVBK  |b 480234256 
029 1 |a DEBBG  |b BV042989995 
029 1 |a DEBBG  |b BV043396847 
029 1 |a DEBBG  |b BV044070148 
029 1 |a DEBSZ  |b 422918725 
029 1 |a DEBSZ  |b 431760268 
029 1 |a DEBSZ  |b 449447154 
029 1 |a DEBSZ  |b 485049252 
029 1 |a NZ1  |b 15910051 
035 |a (OCoLC)881065009  |z (OCoLC)961611919  |z (OCoLC)962663050  |z (OCoLC)992918069  |z (OCoLC)1055378997  |z (OCoLC)1081229249  |z (OCoLC)1129585450 
037 |a CL0501000083  |b Safari Books Online 
042 |a pcc 
050 0 0 |a Q325.6 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 0 |a 519.3  |2 23 
084 |a TEC008000  |2 bisacsh 
049 |a UAMI 
100 1 |a Schwartz, Howard M.,  |e editor. 
245 1 0 |a Multi-agent machine learning :  |b a reinforcement approach /  |c Howard M. Schwartz. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons,  |c [2014] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a "Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"--  |c Provided by publisher 
520 |a "Provide an in-depth coverage of multi-player, differential games and Gam theory"--  |c Provided by publisher 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Cover; Title Page; Copyright; Preface; References; Chapter 1: A Brief Review of Supervised Learning; 1.1 Least Squares Estimates; 1.2 Recursive Least Squares; 1.3 Least Mean Squares; 1.4 Stochastic Approximation; References; Chapter 2: Single-Agent Reinforcement Learning; 2.1 Introduction; 2.2 n-Armed Bandit Problem; 2.3 The Learning Structure; 2.4 The Value Function; 2.5 The Optimal Value Functions; 2.6 Markov Decision Processes; 2.7 Learning Value Functions; 2.8 Policy Iteration; 2.9 Temporal Difference Learning; 2.10 TD Learning of the State-Action Function; 2.11 Q-Learning. 
505 8 |a 2.12 Eligibility TracesReferences; Chapter 3: Learning in Two-Player Matrix Games; 3.1 Matrix Games; 3.2 Nash Equilibria in Two-Player Matrix Games; 3.3 Linear Programming in Two-Player Zero-Sum Matrix Games; 3.4 The Learning Algorithms; 3.5 Gradient Ascent Algorithm; 3.6 WoLF-IGA Algorithm; 3.7 Policy Hill Climbing (PHC); 3.8 WoLF-PHC Algorithm; 3.9 Decentralized Learning in Matrix Games; 3.10 Learning Automata; 3.11 Linear Reward-Inaction Algorithm; 3.12 Linear Reward-Penalty Algorithm; 3.13 The Lagging Anchor Algorithm; 3.14 L R-I Lagging Anchor Algorithm; References. 
505 8 |a Chapter 4: Learning in Multiplayer Stochastic Games4.1 Introduction; 4.2 Multiplayer Stochastic Games; 4.3 Minimax-Q Algorithm; 4.4 Nash Q-Learning; 4.5 The Simplex Algorithm; 4.6 The Lemke-Howson Algorithm; 4.7 Nash-Q Implementation; 4.8 Friend-or-Foe Q-Learning; 4.9 Infinite Gradient Ascent; 4.10 Policy Hill Climbing; 4.11 WoLF-PHC Algorithm; 4.12 Guarding a Territory Problem in a Grid World; 4.13 Extension of L R-I Lagging Anchor Algorithm to Stochastic Games; 4.14 The Exponential Moving-Average Q-Learning (EMA Q-Learning) Algorithm. 
505 8 |a 5.12 Reward Shaping in the Differential Game of Guarding a Territory5.13 Simulation Results; References; Chapter 6: Swarm Intelligence and the Evolution of Personality Traits; 6.1 Introduction; 6.2 The Evolution of Swarm Intelligence; 6.3 Representation of the Environment; 6.4 Swarm-Based Robotics in Terms of Personalities; 6.5 Evolution of Personality Traits; 6.6 Simulation Framework; 6.7 A Zero-Sum Game Example; 6.8 Implementation for Next Sections; 6.9 Robots Leaving a Room; 6.10 Tracking a Target; 6.11 Conclusion; References; Index; End User License Agreement. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Reinforcement learning. 
650 0 |a Differential games. 
650 0 |a Swarm intelligence. 
650 0 |a Machine learning. 
650 6 |a Apprentissage par renforcement (Intelligence artificielle) 
650 6 |a Jeux différentiels. 
650 6 |a Apprentissage automatique. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Electronics  |x General.  |2 bisacsh 
650 7 |a Differential games  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Reinforcement learning  |2 fast 
650 7 |a Swarm intelligence  |2 fast 
776 0 8 |i Print version:  |a Schwartz, Howard M.  |t Multi-agent machine learning.  |d Hoboken, NJ : John Wiley & Sons, [2014]  |z 9781118362082  |w (DLC) 2014016950 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118362082/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Books 24x7  |b B247  |n bks00072864 
938 |a Coutts Information Services  |b COUT  |n 29749967 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1775207 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4039542 
938 |a ebrary  |b EBRY  |n ebr10921255 
938 |a EBSCOhost  |b EBSC  |n 838166 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29749967 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00582647 
938 |a YBP Library Services  |b YANK  |n 11419724 
938 |a YBP Library Services  |b YANK  |n 12057363 
938 |a YBP Library Services  |b YANK  |n 12677638 
994 |a 92  |b IZTAP