Cargando…

Conformal prediction for reliable machine learning : theory, adaptations and applications /

The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial ri...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Balasubramanian, Vineeth, Ho, Shen-Shyang, Vovk, Vladimir, 1960-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, MA : Morgan Kaufmann, 2014.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn880945071
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 140604s2014 maua ob 001 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d DEBBG  |d DEBSZ  |d EBLCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d CEF  |d AU@  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 879074318 
020 |a 9780124017153 
020 |a 0124017150 
020 |a 0123985374 
020 |a 9780123985378 
020 |z 9780123985378 
029 1 |a DEBBG  |b BV042033020 
029 1 |a DEBSZ  |b 41418498X 
029 1 |a DEBSZ  |b 431678278 
029 1 |a GBVCP  |b 88273119X 
035 |a (OCoLC)880945071  |z (OCoLC)879074318 
037 |a CL0500000443  |b Safari Books Online 
050 4 |a Q325.5  |b .C668 2014 
082 0 4 |a 006.3/1  |a 006.31 
049 |a UAMI 
245 0 0 |a Conformal prediction for reliable machine learning :  |b theory, adaptations and applications /  |c edited by Vineeth Balasubramanian, Shen-Shyang Ho, Vladimir Vovk. 
250 |a 1st ed. 
260 |a Waltham, MA :  |b Morgan Kaufmann,  |c 2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Half Title; Title Page; Copyright; Copyright Permissions; Contents; Contributing Authors; Foreword; Preface; Book Organization; Part I: Theory; Part II: Adaptations; Part III: Applications; Companion Website; Contacting Us; Acknowledgments; Part I: Theory; 1 The Basic Conformal Prediction Framework; 1.1 The Basic Setting and Assumptions; 1.2 Set and Confidence Predictors; 1.2.1 Validity and Efficiency of Set and Confidence Predictors; 1.3 Conformal Prediction; 1.3.1 The Binary Case; 1.3.2 The Gaussian Case; 1.4 Efficiency in the Case of Prediction without Objects. 
505 8 |a 1.5 Universality of Conformal Predictors1.6 Structured Case and Classification; 1.7 Regression; 1.8 Additional Properties of Validity and Efficiency in the Online Framework; 1.8.1 Asymptotically Efficient Conformal Predictors; Acknowledgments; 2 Beyond the Basic Conformal Prediction Framework; 2.1 Conditional Validity; 2.2 Conditional Conformal Predictors; 2.2.1 Venn's Dilemma; 2.3 Inductive Conformal Predictors; 2.3.1 Conditional Inductive Conformal Predictors; 2.4 Training Conditional Validity of Inductive Conformal Predictors; 2.5 Classical Tolerance Regions. 
505 8 |a 2.6 Object Conditional Validity and Efficiency2.6.1 Negative Result; 2.6.2 Positive Results; 2.7 Label Conditional Validity and ROC Curves; 2.8 Venn Predictors; 2.8.1 Inductive Venn Predictors; 2.8.2 Venn Prediction without Objects; Acknowledgments; Part II: Adaptations; 3 Active Learning; 3.1 Introduction; 3.2 Background and Related Work; 3.2.1 Pool-based Active Learning with Serial Query; SVM-based methods; Statistical methods; Ensemble-based methods; Other methods; 3.2.2 Batch Mode Active Learning; 3.2.3 Online Active Learning; 3.3 Active Learning Using Conformal Prediction. 
505 8 |a 3.3.1 Query by Transduction (QBT)Algorithmic formulation; 3.3.2 Generalized Query by Transduction; Algorithmic formulation; Combining multiple criteria in GQBT; 3.3.3 Multicriteria Extension to QBT; 3.4 Experimental Results; 3.4.1 Benchmark Datasets; 3.4.2 Application to Face Recognition; 3.4.3 Multicriteria Extension to QBT; 3.5 Discussion and Conclusions; Acknowledgments; 4 Anomaly Detection; 4.1 Introduction; 4.2 Background; 4.3 Conformal Prediction for Multiclass Anomaly Detection; 4.3.1 A Nonconformity Measure for Multiclass Anomaly Detection; 4.4 Conformal Anomaly Detection. 
505 8 |a 4.4.1 Conformal Anomalies4.4.2 Offline versus Online Conformal Anomaly Detection; 4.4.3 Unsupervised and Semi-supervised Conformal Anomaly Detection; 4.4.4 Classification Performance and Tuning of the Anomaly Threshold; 4.5 Inductive Conformal Anomaly Detection; 4.5.1 Offline and Semi-Offline Inductive Conformal Anomaly Detection; 4.5.2 Online Inductive Conformal Anomaly Detection; 4.6 Nonconformity Measures for Examples Represented as Sets of Points; 4.6.1 The Directed Hausdorff Distance; 4.6.2 The Directed Hausdorff k-Nearest Neighbors Nonconformity Measure. 
520 |a The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
700 1 |a Balasubramanian, Vineeth. 
700 1 |a Ho, Shen-Shyang. 
700 1 |a Vovk, Vladimir,  |d 1960- 
776 0 8 |i Print version:  |t Conformal prediction for reliable machine learning.  |d Amsterdam ; Boston : Morgan Kaufmann, 2014  |z 9780123985378  |w (DLC) 2014003894  |w (OCoLC)869777037 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780123985378/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1680381 
994 |a 92  |b IZTAP