UHF RFID technologies for identification and traceability /
Annotation
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London : Hoboken, NJ :
ISTE ; Wiley,
2014.
|
Colección: | Focus series in waves.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Machine generated contents note: 1.1. Introduction
- 1.2. Integrated circuit architecture
- 1.3. RF to DC conversion: modeling the system
- 1.3.1. Determination of the ideal DC output voltage
- 1.3.2. Determination of the "real" DC voltage
- 1.3.3. Effects of parasitics and capacitances on the output voltage
- 1.3.4. Matching considerations
- 1.3.5. Results obtained
- 1.4. RF to DC conversion: proposed circuits and performances
- 1.4.1. Threshold-voltage cancellation circuit
- 1.4.2. Cross-coupled differential drive with automatic bridge structure cancellation circuit
- 1.4.3. Cross-coupled differential drive with controlled tuning voltages
- 1.4.4. Results
- 1.5. Voltage limiter and regulator
- 1.6. Demodulator
- 1.7. Oscillator
- 1.8. Modulator
- 1.9. Digital blocks
- 1.9.1. Memory
- 1.10. Technology, performances and trends
- 1.10.1. Technology choice
- 1.10.2. Design optimization
- 1.10.3. Circuit performances
- 1.11. Bibliography
- 2.1. Tag antenna design
- 2.1.1. Fundamental circuit parameters of the dipole antenna
- 2.1.2. Fat antennas and tip loading
- 2.1.3. Meandered dipoles
- 2.1.4. Influence of dielectric and metallic materials
- losses and detuning
- 2.1.5. Near-field/far-field behavior of UHF RFID tags
- 2.2. Matching between the antenna impedance and the microchip impedance
- 2.2.1. Matching conditions
- 2.2.2. L-matching basics
- 2.2.3. Equivalent electrical circuits
- 2.2.4. Double-tuned matching
- 2.2.5. Synthesis of a double-tuned tag and a naive tag
- 2.2.6. Alternative implementation of the optimum double-tuned match
- 2.2.7. Example of a double-tuned match tag and use in variable environments
- 2.3. RFID tag antennas using an inductively coupled feed
- 2.3.1. Analytical model
- 2.3.2. Antenna design and results
- 2.4. Combined RFID tag antenna for recipients containing liquids
- 2.4.1. Module description
- 2.4.2. Inductive coupling and antenna matching
- 2.4.3. Antenna design
- 2.4.4. Measurements of the initial tag
- 2.4.5. Measurements with an empty and filled plastic recipient
- 2.4.6. Combined antenna
- 2.4.7. Discussion relative to the respect of the matching conditions
- 2.5. Tag on Metal
- 2.5.1. Radiation efficiency of low-profile patch antennas
- 2.5.2. Ultra-thin metal tags
- 2.5.3. Thick metal tags
- 2.5.4. Improved dipole designs on metallic surfaces
- 2.6. Bibliography
- 3.1. Backscattering principle of communication by between-base station and tag
- 3.1.1. The forward link: communication from the base station to the tag
- 3.1.2. The return link: communication from the tag to the base station
- 3.2. The merit factor of a tag,??es or?RCS
- 3.2.1. Definition of the variation of the radar cross section,?es or?RCS
- 3.2.2. Estimation of??es as a function of??
- 3.2.3. The variation??es=f(?Gamma;, Gamma;1)
- 3.3. Variations of??es=f(a)
- 3.4. After the theory, RFID at UHF and SHF realities
- 3.5. Measuring?RCS
- 3.5.1. Example of a method for measuring?RCS
- 3.6. The "Radar" equation
- 3.7. Appendix: summary of the principal formulas
- 4.1. Introduction
- 4.2. Market inflection point: users
- 4.3. RFID: what for
- 4.4. Open- and closed-loop applications
- 4.4.1. Closed-loop applications
- 4.4.2. Open-loop applications
- 4.5. RFID return on investment
- 4.5.1. Introduction
- 4.5.2. Cost reduction
- 4.5.3. Sales increase
- 4.6. Many RFID technologies
- 4.7. Examples
- 4.8. Next RFID: product-embedded and seamless infrastructure
- 4.8.1. Introduction
- 4.8.2. RFID: "Slap and Ship"
- 4.8.3. Next RFID: from cradle to grave
- 4.8.4. Embedded RFID
- 4.8.5. Seamless and ubiquitous infrastructure
- 4.8.6. Software for business decisions.