A practical introduction to computer vision with OpenCV /
"Explains the theory behind basic computer vision and provides a bridge from the theory to practical implementation using the industry standard OpenCV librariesComputer Vision is a rapidly expanding area and it is becoming progressively easier for developers to make use of this field due to the...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Chichester, West Sussex, United Kingdon ; Hoboken, N.J. :
John Wiley & Sons,
2014.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Machine generated contents note: 1. Introduction
- 1.1. A Difficult Problem
- 1.2. The Human Vision System
- 1.3. Practical Applications of Computer Vision
- 1.4. The Future of Computer Vision
- 1.5. Material in This Textbook
- 1.6. Going Further with Computer Vision
- 2. Images
- 2.1. Cameras
- 2.1.1. The Simple Pinhole Camera Model
- 2.2. Images
- 2.2.1. Sampling
- 2.2.2. Quantisation
- 2.3. Colour Images
- 2.3.1. Red-Green
- Blue (RGB) Images
- 2.5.2. Cyan-Magenta
- Yellow (CMY) Images
- 2.5.3. YUV Images
- 2.5.4. Hue Luminance Saturation (HLS) Images
- 2.5.5. Other Colour Spaces
- 2.5.6. Some Colour Applications
- 2.4. Noise
- 2.4.1. Types of Noise
- 2.4.2. Noise Models
- 2.4.3. Noise Generation
- 2.4.4. Noise Evaluation
- 2.5. Smoothing
- 2.5.1. Image Averaging
- 2.5.2. Local Averaging and Gaussian Smoothing
- 2.5.3. Rotating Mask
- 2.5.4. Median Filter
- 3. Histograms
- 3.1. 1D Histograms
- 3.1.1. Histogram Smoothing
- 3.1.2. Colour Histograms
- 3.2. 3D Histograms
- 3.3. Histogram/Image Equalisation
- 3.4. Histogram Comparison
- 3.5. Back-projection
- 3.6. k-means Clustering
- 4. Binary Vision
- 4.1. Thresholding
- 4.1.1. Thresholding Problems
- 4.2. Threshold Detection Methods
- 4.2.1. Bimodal Histogram Analysis
- 4.2.2. Optimal Thresholding
- 4.2.3. Otsu Thresholding
- 4.3. Variations on Thresholding
- 4.3.1. Adaptive Thresholding
- 4.3.2. Band Thresholding
- 4.3.3. Semi-thresholding
- 4.3.4. Multispectral Thresholding
- 4.4. Mathematical Morphology
- 4.4.1. Dilation
- 4.4.2. Erosion
- 4.4.3. Opening and Closing
- 4.4.4. Grey-scale and Colour Morphology
- 4.5. Connectivity
- 4.5.1. Connectedness: Paradoxes and Solutions
- 4.5.2. Connected Components Analysis
- 5. Geometric Transformations
- 5.1. Problem Specification and Algorithm
- 5.2. Affine Transformations
- 5.2.1. Known Affine Transformations
- 5.2.2. Unknown Affine Transformations
- 5.3. Perspective Transformations
- 5.4. Specification of More Complex Transformations
- 5.5. Interpolation
- 5.5.1. Nearest Neighbour Interpolation
- 5.5.2. Bilinear Interpolation
- 5.5.3. Bi-Cubic Interpolation
- 5.6. Modelling and Removing Distortion from Cameras
- 5.6.7. Camera Distortions
- 5.6.2. Camera Calibration and Removing Distortion
- 6. Edges
- 6.1. Edge Detection
- 6.1.1. First Derivative Edge Detectors
- 6.1.2. Second Derivative Edge Detectors
- 6.1.3. Multispectral Edge Detection
- 6.1.4. Image Sharpening
- 6.2. Contour Segmentation
- 6.2.1. Basic Representations of Edge Data
- 6.2.2. Border Detection
- 6.2.3. Extracting Line Segment Representations of Edge Contours
- 6.3. Hough Transform
- 6.3.1. Hough for Lines
- 6.3.2. Hough for Circles
- 6.3.3. Generalised Hough
- 7. Features
- 7.1. Moravec Corner Detection
- 7.2. Harris Corner Detection
- 7.3. FAST Corner Detection
- 7.4. SIFT
- 7.4.1. Scale Space Extrema Detection
- 7.4.2. Accurate Keypoint Location
- 7.4.3. Keypoint Orientation Assignment
- 7.4.4. Keypoint Descriptor
- 7.4.5. Matching Keypoints
- 7.4.6. Recognition
- 7.5. Other Detectors
- 7.5.1. Minimum Eigenvalues
- 7.5.2. SURF
- 8. Recognition
- 8.1. Template Matching
- 8.1.1. Applications
- 8.1.2. Template Matching Algorithm
- 8.1.3. Matching Metrics
- 8.1.4. Finding Local Maxima or Minima
- 8.1.5. Control Strategies for Matching
- 8.2. Chamfer Matching
- 8.2.1. Chamfering Algorithm
- 8.2.2. Chamfer Matching Algorithm
- 8.3. Statistical Pattern Recognition
- 8.3.1. Probability Review
- 8.3.2. Sample Features
- 8.3.3. Statistical Pattern Recognition Technique
- 8.4. Cascade of Haar Classifiers
- 8.4.1. Features
- 8.4.2. Training
- 8.4.3. Classifiers
- 8.4.4. Recognition
- 8.5. Other Recognition Techniques
- 8.5.1. Support Vector Machines (SVM)
- 8.5.2. Histogram of Oriented Gradients (HoG)
- 8.6. Performance
- 8.6.1. Image and Video Datasets
- 8.6.2. Ground Truth
- 8.6.3. Metrics for Assessing Classification Performance
- 8.6.4. Improving Computation Time
- 9. Video
- 9.1. Moving Object Detection
- 9.1.1. Object of Interest
- 9.1.2. Common Problems
- 9.1.3. Difference Images
- 9.1.4. Background Models
- 9.1.5. Shadow Detection
- 9.2. Tracking
- 9.2.1. Exhaustive Search
- 9.2.2. Mean Shift
- 9.2.3. Dense Optical Flow
- 9.2.4. Feature Based Optical Flow
- 9.3. Performance
- 9.3.1. Video Datasets (and Formats)
- 9.3.2. Metrics for Assessing Video Tracking Performance
- 10. Vision Problems
- 10.1. Baby Food
- 10.2. Labels on Glue
- 10.3. O-rings
- 10.4. Staying in Lane
- 10.5. Reading Notices
- 10.6. Mailboxes
- 10.7. Abandoned and Removed Object Detection
- 10.8. Surveillance
- 10.9. Traffic Lights
- 10.10. Real Time Face Tracking
- 10.11. Playing Pool
- 10.12. Open Windows
- 10.13. Modelling Doors
- 10.14. Determining the Time from Analogue Clocks
- 10.15. Which Page
- 10.16. Nut/Bolt/Washer Classification
- 10.17. Road Sign Recognition
- 10.18. License Plates
- 10.19. Counting Bicycles
- 10.20. Recognise Paintings.