Cargando…

Nature-inspired optimization algorithms /

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-cho...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yang, Xin-She
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London [England] ; Waltham [Massachusetts] : Elsevier, 2014.
Edición:First edition.
Colección:Elsevier insights.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn874179091
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 140306t20142014enka ob 000 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d UMI  |d N$T  |d COO  |d DEBBG  |d DEBSZ  |d RRP  |d YDXCP  |d OCLCQ  |d OCLCF  |d COCUF  |d CNNOR  |d LOA  |d CEF  |d AU@  |d OCLCQ  |d G3B  |d LVT  |d S9I  |d OCLCO  |d OCLCQ  |d QGK 
019 |a 875004049  |a 966398004  |a 1259131002 
020 |a 9780124167452  |q (electronic bk.) 
020 |a 0124167454  |q (electronic bk.) 
020 |a 0124167438 
020 |a 9780124167438 
020 |z 9780124167438 
020 |z 0124167454 
029 1 |a AU@  |b 000053310476 
029 1 |a DEBBG  |b BV042032106 
029 1 |a DEBSZ  |b 414175735 
035 |a (OCoLC)874179091  |z (OCoLC)875004049  |z (OCoLC)966398004  |z (OCoLC)1259131002 
037 |a CL0500000410  |b Safari Books Online 
050 4 |a Q335  |b .Y36 2014eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
049 |a UAMI 
100 1 |a Yang, Xin-She. 
245 1 0 |a Nature-inspired optimization algorithms /  |c Xin-She Yang. 
250 |a First edition. 
264 1 |a London [England] ;  |a Waltham [Massachusetts] :  |b Elsevier,  |c 2014. 
264 4 |c ©2014 
300 |a 1 online resource (276 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Elsevier insights 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
520 |a Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literatureProvides a theoretical understanding as well as practical implementation hintsProvides a step-by-step introduction to each algorithm. 
505 0 |a Half Title; Title Page; Copyright; Contents; Preface; 1 Introduction to Algorithms; 1.1 What is an Algorithm?; 1.2 Newton's Method; 1.3 Optimization; 1.3.1 Gradient-Based Algorithms; 1.3.2 Hill Climbing with Random Restart; 1.4 Search for Optimality; 1.5 No-Free-Lunch Theorems; 1.5.1 NFL Theorems; 1.5.2 Choice of Algorithms; 1.6 Nature-Inspired Metaheuristics; 1.7 A Brief History of Metaheuristics; References; 2 Analysis of Algorithms; 2.1 Introduction; 2.2 Analysis of Optimization Algorithms; 2.2.1 Algorithm as an Iterative Process; 2.2.2 An Ideal Algorithm?; 2.2.3 A Self-Organization System. 
505 8 |a 2.2.4 Exploration and Exploitation2.2.5 Evolutionary Operators; 2.3 Nature-Inspired Algorithms; 2.3.1 Simulated Annealing; 2.3.2 Genetic Algorithms; 2.3.3 Differential Evolution; 2.3.4 Ant and Bee Algorithms; 2.3.5 Particle Swarm Optimization; 2.3.6 The Firefly Algorithm; 2.3.7 Cuckoo Search; 2.3.8 The Bat Algorithm; 2.3.9 Harmony Search; 2.3.10 The Flower Algorithm; 2.3.11 Other Algorithms; 2.4 Parameter Tuning and Parameter Control; 2.4.1 Parameter Tuning; 2.4.2 Hyperoptimization; 2.4.3 Multiobjective View; 2.4.4 Parameter Control; 2.5 Discussions; 2.6 Summary; References. 
505 8 |a 3 Random Walks and Optimization3.1 Random Variables; 3.2 Isotropic Random Walks; 3.3 Lévy Distribution and Lévy Flights; 3.4 Optimization as Markov Chains; 3.4.1 Markov Chain; 3.4.2 Optimization as a Markov Chain; 3.5 Step Sizes and Search Efficiency; 3.5.1 Step Sizes, Stopping Criteria, and Efficiency; 3.5.2 Why Lévy Flights are More Efficient; 3.6 Modality and Intermittent Search Strategy; 3.7 Importance of Randomization; 3.7.1 Ways to Carry Out Random Walks; 3.7.2 Importance of Initialization; 3.7.3 Importance Sampling; 3.7.4 Low-Discrepancy Sequences; 3.8 Eagle Strategy. 
505 8 |a 3.8.1 Basic Ideas of Eagle Strategy3.8.2 Why Eagle Strategy is So Efficient; References; 4 Simulated Annealing; 4.1 Annealing and Boltzmann Distribution; 4.2 Parameters; 4.3 SA Algorithm; 4.4 Unconstrained Optimization; 4.5 Basic Convergence Properties; 4.6 SA Behavior in Practice; 4.7 Stochastic Tunneling; References; 5 Genetic Algorithms; 5.1 Introduction; 5.2 Genetic Algorithms; 5.3 Role of Genetic Operators; 5.4 Choice of Parameters; 5.5 GA Variants; 5.6 Schema Theorem; 5.7 Convergence Analysis; References; 6 Differential Evolution; 6.1 Introduction; 6.2 Differential Evolution. 
505 8 |a 6.3 Variants6.4 Choice of Parameters; 6.5 Convergence Analysis; 6.6 Implementation; References; 7 Particle Swarm Optimization; 7.1 Swarm Intelligence; 7.2 PSO Algorithm; 7.3 Accelerated PSO; 7.4 Implementation; 7.5 Convergence Analysis; 7.5.1 Dynamical System; 7.5.2 Markov Chain Approach; 7.6 Binary PSO; References; 8 Firefly Algorithms; 8.1 The Firefly Algorithm; 8.1.1 Firefly Behavior; 8.1.2 Standard Firefly Algorithm; 8.1.3 Variations of Light Intensity and Attractiveness; 8.1.4 Controlling Randomization; 8.2 Algorithm Analysis; 8.2.1 Scalings and Limiting Cases. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Computer algorithms. 
650 0 |a Parallel processing (Electronic computers) 
650 0 |a Electronic data processing  |x Distributed processing. 
650 0 |a Artificial intelligence. 
650 2 |a Algorithms 
650 2 |a Artificial Intelligence 
650 6 |a Algorithmes. 
650 6 |a Parallélisme (Informatique) 
650 6 |a Traitement réparti. 
650 6 |a Intelligence artificielle. 
650 7 |a algorithms.  |2 aat 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Electronic data processing  |x Distributed processing.  |2 fast  |0 (OCoLC)fst00906987 
650 7 |a Parallel processing (Electronic computers)  |2 fast  |0 (OCoLC)fst01052928 
776 0 8 |i Print version:  |a Yang, Xin-She.  |t Nature-inspired optimization algorithms.  |b First edition.  |d London, England ; Waltham, Massachusetts : Elsevier, ©2014  |h xii, 263 pages  |z 9780124167438 
830 0 |a Elsevier insights. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780124167438/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
938 |a ebrary  |b EBRY  |n ebr10839265 
938 |a EBSCOhost  |b EBSC  |n 574809 
938 |a YBP Library Services  |b YANK  |n 11675027 
994 |a 92  |b IZTAP