Cargando…

Differential forms : theory and practice /

Differential forms are utilized as a mathematical technique to help students, researchers, and engineers analyze and interpret problems where abstract spaces and structures are concerned, and when questions of shape, size, and relative positions are involved. Differential Forms has gained high recog...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Weintraub, Steven H. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, UK : Elsevier, 2014.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Half Title; Title Page; Copyright; Dedication; Contents; Preface; 1 Differential Forms in Rn, I; 1.0 Euclidean spaces, tangent spaces, and tangent vector fields; 1.1 The algebra of differential forms; 1.2 Exterior differentiation; 1.3 The fundamental correspondence; 1.4 The Converse of Poincaré's Lemma, I; 1.5 Exercises; 2 Differential Forms in Rn, II; 2.1 1-Forms; 2.2 k-Forms; 2.3 Orientation and signed volume; 2.4 The converse of Poincaré's Lemma, II; 2.5 Exercises; 3 Push-forwards and Pull-backs in Rn; 3.1 Tangent vectors; 3.2 Points, tangent vectors, and push-forwards.
  • 3.3 Differential forms and pull-backs3.4 Pull-backs, products, and exterior derivatives; 3.5 Smooth homotopies and the Converse of Poincaré's Lemma, III; 3.6 Exercises; 4 Smooth Manifolds; 4.1 The notion of a smooth manifold; 4.2 Tangent vectors and differential forms; 4.3 Further constructions; 4.4 Orientations of manifolds'227intuitive discussion; 4.5 Orientations of manifolds'227careful development; 4.6 Partitions of unity; 4.7 Smooth homotopies and the Converse of Poincaré's Lemma in general; 4.8 Exercises; 5 Vector Bundles and the Global Point of View.
  • 5.1 The definition of a vector bundle5.2 The dual bundle, and related bundles; 5.3 The tangent bundle of a smooth manifold, and related bundles; 5.4 Exercises; 6 Integration of Differential Forms; 6.1 Definite integrals in textmathbbRn; 6.2 Definition of the integral in general; 6.3 The integral of a 0-form over a point; 6.4 The integral of a 1-form over a curve; 6.5 The integral of a 2-form over a surface; 6.6 The integral of a 3-form over a solid body; 6.7 Chains and integration on chains; 6.8 Exercises; 7 The Generalized Stokes's Theorem; 7.1 Statement of the theorem.
  • 7.2 The fundamental theorem of calculus and its analog for line integrals7.3 Cap independence; 7.4 Green's and Stokes's theorems; 7.5 Gauss's theorem; 7.6 Proof of the GST; 7.7 The converse of the GST; 7.8 Exercises; 8 de Rham Cohomology; 8.1 Linear and homological algebra constructions; 8.2 Definition and basic properties; 8.3 Computations of cohomology groups; 8.4 Cohomology with compact supports; 8.5 Exercises; Index; A; B; C; D; E; F; G; H; I; L; M; N; O; P; R; S; T; V; W.