|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
OR_ocn870340096 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
140212s2013 maua ob 001 0 eng d |
040 |
|
|
|a UMI
|b eng
|e pn
|c UMI
|d COO
|d DEBBG
|d DEBSZ
|d EBLCP
|d OCLCA
|d OCLCQ
|d COCUF
|d K6U
|d CNNOR
|d CCO
|d Z5A
|d PIFAG
|d FVL
|d VGM
|d ZCU
|d LIV
|d MERUC
|d OCLCQ
|d U3W
|d D6H
|d UUM
|d STF
|d OCLCF
|d CEF
|d ICG
|d INT
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 867926520
|
020 |
|
|
|a 9780124115200
|
020 |
|
|
|a 0124115209
|
020 |
|
|
|a 012411511X
|
020 |
|
|
|a 9780124115118
|
020 |
|
|
|z 9780124115118
|
029 |
1 |
|
|a AU@
|b 000053308418
|
029 |
1 |
|
|a CHNEW
|b 000899585
|
029 |
1 |
|
|a DEBBG
|b BV041783854
|
029 |
1 |
|
|a DEBBG
|b BV044065284
|
029 |
1 |
|
|a DEBSZ
|b 404335659
|
029 |
1 |
|
|a DEBSZ
|b 431575681
|
029 |
1 |
|
|a DEBSZ
|b 449401359
|
029 |
1 |
|
|a GBVCP
|b 882725602
|
029 |
1 |
|
|a NLGGC
|b 372667945
|
035 |
|
|
|a (OCoLC)870340096
|z (OCoLC)867926520
|
037 |
|
|
|a CL0500000382
|b Safari Books Online
|
050 |
|
4 |
|a QA76.9.D343
|b Z526 2013
|
082 |
0 |
4 |
|a 006.312
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Zhao, Yanchang,
|d 1977-
|
245 |
1 |
0 |
|a Data mining applications with R /
|c Yanchang Zhao, Yonghua Cen.
|
260 |
|
|
|a Waltham, MA :
|b Academic Press,
|c ©2014.
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front Cover; Data Mining Applications with R; Copyright; Contents; Preface; Background; Objectives and Significance; Target Audience; Acknowledgments; Review Committee; Additional Reviewers; Foreword; References; Chapter 1: Power Grid Data Analysis with R and Hadoop; 1.1. Introduction; 1.2. A Brief Overview of the Power Grid; 1.3. Introduction to MapReduce, Hadoop, and RHIPE; 1.3.1. MapReduce; 1.3.1.1. An Example: The Iris Data; 1.3.2. Hadoop; 1.3.3. RHIPE: R with Hadoop; 1.3.3.1. Installation; 1.3.3.2. Iris MapReduce Example with RHIPE; 1.3.3.2.1. The Map Expression.
|
505 |
8 |
|
|a 1.3.3.2.2. The Reduce Expression1.3.3.2.3. Running the Job; 1.3.3.2.4. Looking at Results; 1.3.4. Other Parallel R Packages; 1.4. Power Grid Analytical Approach; 1.4.1. Data Preparation; 1.4.2. Exploratory Analysis and Data Cleaning; 1.4.2.1. 5-min Summaries; 1.4.2.2. Quantile Plots of Frequency; 1.4.2.3. Tabulating Frequency by Flag; 1.4.2.4. Distribution of Repeated Values; 1.4.2.5. White Noise; 1.4.3. Event Extraction; 1.4.3.1. OOS Frequency Events; 1.4.3.2. Finding Generator Trip Features; 1.4.3.3. Creating Overlapping Frequency Data; 1.5. Discussion and Conclusions; Appendix; References.
|
505 |
8 |
|
|a Chapter 2: Picturing Bayesian Classifiers: A Visual Data Mining Approach to Parameters Optimization2.1. Introduction; 2.2. Related Works; 2.3. Motivations and Requirements; 2.3.1. R Packages Requirements; 2.4. Probabilistic Framework of NB Classifiers; 2.4.1. Choosing the Model; 2.4.1.1. Multivariate Bernoulli model; 2.4.1.2. Multinomial Model; 2.4.1.3. Poisson Model; 2.4.2. Estimating the Parameters; 2.5. Two-Dimensional Visualization System; 2.5.1. Design Choices; 2.5.2. Visualization Design; 2.6. A Case Study: Text Classification; 2.6.1. Description of the Dataset.
|
505 |
8 |
|
|a 2.6.2. Creating Document-Term Matrices2.6.3. Loading Existing Term-Document Matrices; 2.6.4. Running the Program; 2.6.4.1. Comparing Models; 2.7. Conclusions; Acknowledgments; References; Chapter 3: Discovery of Emergent Issues and Controversies in Anthropology Using Text Mining, Topic Modeling, and Social Ne ... ; 3.1. Introduction; 3.2. How Many Messages and How Many Twitter-Users in the Sample?; 3.3. Who Is Writing All These Twitter Messages?; 3.4. Who Are the Influential Twitter-Users in This Sample?; 3.5. What Is the Community Structure of These Twitter-Users?
|
505 |
8 |
|
|a 3.6. What Were Twitter-Users Writing About During the Meeting?3.7. What Do the Twitter Messages Reveal About the Opinions of Their Authors?; 3.8. What Can Be Discovered in the Less Frequently Used Words in the Sample?; 3.9. What Are the Topics That Can Be Algorithmically Discovered in This Sample?; 3.10. Conclusion; References; Chapter 4: Text Mining and Network Analysis of Digital Libraries in R; 4.1. Introduction; 4.2. Dataset Preparation; 4.3. Manipulating the Document-Term Matrix; 4.3.1. The Document-Term Matrix; 4.3.2. Term Frequency-Inverse Document Frequency.
|
520 |
|
|
|a Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. Twenty different real-world case studies illustrate various techniques in rapidly growing areas, including: RetailCrime and homeland securityStock mark.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Data mining
|x Industrial applications
|v Case studies.
|
650 |
|
0 |
|a R (Computer program language)
|
650 |
|
6 |
|a Exploration de données (Informatique)
|x Applications industrielles
|v Études de cas.
|
650 |
|
6 |
|a R (Langage de programmation)
|
650 |
|
7 |
|a R (Computer program language)
|2 fast
|
655 |
|
7 |
|a Case studies
|2 fast
|
700 |
1 |
|
|a Cen, Yonghua.
|
776 |
0 |
8 |
|i Print version:
|a Zhao, Yanchang, 1977-
|t Data mining applications with R.
|d Amsterdam ; Boston : Academic Press, an imprint of Elsevier, 2013
|z 9780124115200
|w (OCoLC)867631062
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9780124115118/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1574448
|
994 |
|
|
|a 92
|b IZTAP
|