Cargando…

Programming Elastic MapReduce /

Although you don't need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schmidt, Kevin J. (Kevin James)
Otros Autores: Phillips, Chris, 1971-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, ©2014.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_ocn870275289
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 140210s2014 caua o 001 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d COO  |d DEBBG  |d CUS  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d FEM  |d OCLCQ  |d CEF  |d UAB  |d AU@  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 968071670  |a 969048298 
020 |a 1449363628 
020 |a 9781449363628 
020 |a 9781449364045 
020 |a 1449364047 
020 |z 9781449363628 
029 1 |a DEBBG  |b BV041783842 
029 1 |a DEBSZ  |b 404335535 
029 1 |a GBVCP  |b 882725556 
035 |a (OCoLC)870275289  |z (OCoLC)968071670  |z (OCoLC)969048298 
037 |a CL0500000380  |b Safari Books Online 
050 4 |a QA76.9.D5  |b S36 2014 
082 0 4 |a 004  |q OCoLC 
049 |a UAMI 
100 1 |a Schmidt, Kevin J.  |q (Kevin James) 
245 1 0 |a Programming Elastic MapReduce /  |c Kevin Schmidt and Christopher Phillips. 
246 1 |i Subtitle on cover:  |a Using AWS services to build an end-to-end application 
260 |a Sebastopol, CA :  |b O'Reilly Media,  |c ©2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
588 0 |a Online resource; title from title page (Safari, viewed January 30, 2014). 
520 |a Although you don't need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS). Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you'll learn how to assemble the building blocks necessary to solve your biggest data analysis problems. Get an overview of the AWS and Apache software tools used in large-scale data analysis Go through the process of executing a Job Flow with a simple log analyzer Discover useful MapReduce patterns for filtering and analyzing data sets Use Apache Hive and Pig instead of Java to build a MapReduce Job Flow Learn the basics for using Amazon EMR to run machine learning algorithms Develop a project cost model for using Amazon EMR and other AWS tools. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Apache Hadoop. 
630 0 7 |a Apache Hadoop.  |2 blmlsh 
630 0 7 |a Apache Hadoop  |2 fast 
650 0 |a Electronic data processing  |x Distributed processing. 
650 0 |a Big data. 
650 0 |a Web services. 
650 0 |a Internet programming. 
650 6 |a Traitement réparti. 
650 6 |a Données volumineuses. 
650 6 |a Services Web. 
650 6 |a Programmation Internet. 
650 1 7 |a Internet programming.  |2 bisacsh 
650 7 |a Big data  |2 fast 
650 7 |a Electronic data processing  |x Distributed processing  |2 fast 
650 7 |a Internet programming  |2 fast 
650 7 |a Web services  |2 fast 
700 1 |a Phillips, Chris,  |d 1971- 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781449364038/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP