|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
OR_ocn870088350 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
140207s2013 xx ob 001 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d COO
|d OCLCO
|d OCLCF
|d OCLCQ
|d UAB
|d OCLCQ
|d UKAHL
|d UWO
|d CZL
|d TOH
|d OCLCO
|d OCLCQ
|d TAC
|
019 |
|
|
|a 1228510683
|a 1355685784
|
020 |
|
|
|a 1306410061
|q (ebk)
|
020 |
|
|
|a 9781306410069
|q (ebk)
|
020 |
|
|
|a 9781466513440
|q (electronic bk.)
|
020 |
|
|
|a 1466513446
|q (electronic bk.)
|
020 |
|
|
|a 9781466513433
|
020 |
|
|
|a 1466513438
|
020 |
|
|
|a 0367380439
|
020 |
|
|
|a 9780367380434
|
020 |
|
|
|a 9780429098581
|
020 |
|
|
|a 0429098588
|
024 |
8 |
|
|a KE78966
|
024 |
8 |
|
|a 9781466513440
|
029 |
1 |
|
|a AU@
|b 000066972231
|
029 |
1 |
|
|a AU@
|b 000070347516
|
035 |
|
|
|a (OCoLC)870088350
|z (OCoLC)1228510683
|z (OCoLC)1355685784
|
037 |
|
|
|a 572257
|b MIL
|
050 |
|
4 |
|a QA297
|b .C37 2013eb
|
082 |
0 |
4 |
|a 515.350285
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Castillo, Jose E.
|
245 |
1 |
0 |
|a Mimetic Discretization Methods.
|
260 |
|
|
|b Chapman and Hall/CRC,
|c 2013.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references (pages 217-230) and index.
|
505 |
0 |
|
|a 1. Introduction -- 2. Continuum mathematical models -- 3. Notes on numerical analysis -- 4. Mimetic differential operators -- 5. Object-oriented programming and C++ -- 6. Mimetic Methods Toolkit (MTK) -- 7. Nonuniform structured meshes -- 8. Case Studies.
|
520 |
|
|
|a To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and.
|
542 |
|
|
|f Copyright © Chapman and Hall/CRC 2013
|g 2013
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Numerical analysis.
|
650 |
|
6 |
|a Analyse numérique.
|
650 |
|
7 |
|a Numerical analysis.
|2 fast
|0 (OCoLC)fst01041273
|
776 |
0 |
8 |
|i Print version:
|z 9781306410069
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781466513440/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24367972
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis27431280
|
994 |
|
|
|a 92
|b IZTAP
|