Model free adaptive control : theory and applications /
This book summarizes theory and applications of model-free adaptive control (MFAC), which is a pure data-driven model-free control method, and whose controller design and stability analysis merely depend on the measured input and output data of the controlled plants. Topics include: pseudo partial d...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton, FL :
CRC Press,
©2014.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- 1 Introduction 1
- 1.1 Model-Based Control 1
- 1.1.1 Modeling and Identification 1
- 1.1.2 Model-Based Controller Design 3
- 1.2 Data-Driven Control 5
- 1.2.1 Definition and Motivation of Data-Driven Control 6
- 1.2.2 Object of Data-Driven Control Methods 7
- 1.2.3 Necessity of Data-Driven Control Theory and Methods 8
- 1.2.4 Brief Survey on Data-Driven Control Methods 10
- 1.2.4.1 DDC Classification According to Data Usage 10
- 1.2.4.2 DDC Classification According to Controller Structure Design 14
- 1.2.5 Summary of Data-Driven Control Methods 15
- 1.3 Preview of the Book 17
- 2 Recursive Parameter Estimation for Discrete-Time Systems 19
- 2.1 Introduction 19
- 2.2 Parameter Estimation Algorithm for Linearly Parameterized Systems 20
- 2.2.1 Projection Algorithm 21
- 2.2.2 Least-Squares Algorithm 22
- 2.2.2.1 Least-Squares Algorithm for Time-Invariant Parameter Estimation 22
- 2.2.2.2 Modified Least-Squares Algorithm for Time-Varying Parameter Estimation 24
- 2.3 Parameter Estimation Algorithm for Nonlinearly Parameterized Systems 27
- 2.3.1 Projection Algorithm and Its Modified Form for Nonlinearly Parameterized Systems 27
- 2.3.1.1 Existing Projection Algorithm 27
- 2.3.1.2 Modified Projection Algorithm 28
- 2.3.2 Least-Squares Algorithm and Its Modified Form for Nonlinearly Parameterized Systems 32
- 2.3.2.1 Existing Least-Squares Algorithm 32
- 2.3.2.2 Modified Least-Squares Algorithm 34
- 2.4 Conclusions 44
- 3 Dynamic Linearization Approach of Discrete-Time Nonlinear Systems 45
- 3.1 Introduction 45
- 3.2 SISO Discrete-Time Nonlinear Systems 47
- 3.2.1 Compact Form Dynamic Linearization 47
- 3.2.2 Partial Form Dynamic Linearization 53
- 3.2.3 Full Form Dynamic Linearization 59
- 3.3 MIMO Discrete-Time Nonlinear Systems 64
- 3.3.1 Compact Form Dynamic Linearization 64
- 3.3.2 Partial Form Dynamic Linearization 66
- 3.3.3 Full Form Dynamic Linearization 69
- 3.4 Conclusions 71
- 4 Model-Free Adaptive Control of SISO Discrete-Time Nonlinear Systems 75
- 4.1 Introduction 75
- 4.2 CFDL Data Model Based MFAC 77
- 4.2.1 Control System Design 77
- 4.2.1.1 Controller Algorithm 77
- 4.2.1.2 PPD Estimation Algorithm 78
- 4.2.1.3 System Control Scheme 79
- 4.2.2 Stability Analysis 80
- 4.2.3 Simulation Results 87
- 4.3 PFDL Data Model Based MFAC 93
- 4.3.1 Control System Design 93
- 4.3.1.1 Controller Algorithm 94
- 4.3.1.2 PG Estimation Algorithm 94
- 4.3.1.3 System Control Scheme 95
- 4.3.2 Stability Analysis 96
- 4.3.3 Simulation Results 104
- 4.4 FFDL Data Model Based MFAC 108
- 4.4.1 Control System Design 108
- 4.4.1.1 Controller Algorithm 110
- 4.4.1.2 PG Estimation Algorithm 111
- 4.4.1.3 System Control Scheme 111
- 4.4.2 Simulation Results 113
- 4.5 Conclusions H8
- 5 Model-Free Adaptive Control of MIMO Discrete-Time Nonlinear Systems 119
- 5.1 Introduction 119
- 5.2 CFDL Data Model Based MFAC 120
- 5.2.1 Control System Design 120
- 5.2.1.1 Controller Algorithm 121
- 5.2.1.2 PJM Estimation Algorithm 122
- 5.2.1.3 System Control Scheme 123
- 5.2.2 Stability Analysis 124
- 5.2.3 Simulation Results 132
- 5.3 PFDL Data Model Based MFAC 134
- 5.3.1 Control System Design 134
- 5.3.1.1 Controller Algorithm 136
- 5.3.1.2 PPJM Estimation Algorithm 137
- 5.3.1.3 System Control Scheme 138
- 5.3.2 Stability Analysis 139
- 5.3.3 Simulation Results 145
- 5.4 FFDL Data Model Based MFAC 149
- 5.4.1 Control System Design 149
- 5.4.1.1 Controller Algorithm 150
- 5.4.1.2 PPJM Estimation Algorithm 151
- 5.4.1.3 System Control Scheme 152
- 5.4.2 Simulation Results 153
- 5.5 Conclusions 156
- 6 Model-Free Adaptive Predictive Control 157
- 6.1 Introduction 157
- 6.2 CFDL Data Model Based MFAPC 158
- 6.2.1 Control System Design 158
- 6.2.1.1 Controller Algorithm 160
- 6.2.1.2 PPD Estimation Algorithm and Prediction Algorithm 161
- 6.2.1.3 Control Scheme 162
- 6.2.2 Stability Analysis 164
- 6.2.3 Simulation Results 167
- 6.3 PFDL Data Model Based MFAPC 171
- 6.3.1 Control System Design 171
- 6.3.1.1 Controller Algorithm 174
- 6.3.1.2 PG Estimation Algorithm and Prediction Algorithm 174
- 6.3.1.3 Control Scheme 176
- 6.3.2 Simulation Results 177
- 6.4 FFDL Data Model Based MFAPC 182
- 6.4.1 Control System Design 182
- 6.4.1.1 Controller Algorithm 184
- 6.4.1.2 PG Estimation Algorithm 185
- 6.4.1.3 Control Scheme 186
- 6.4.2 Simulation Results 188
- 6.5 Conclusions 190
- 7 Model-Free Adaptive Iterative Learning Control 193
- 7.1 Introduction 193
- 7.2 CFDL Data Model Based MFAILC 195
- 7.2.1 CFDL Data Model in the Iteration Domain 195
- 7.2.2 Control System Design 198
- 7.2.2.1 Controller Algorithm 198
- 7.2.2.2 PPD Iterative Updating Algorithm 199
- 7.2.2.3 CFDL-MFAILC Scheme 199
- 7.2.3 Convergence Analysis 200
- 7.2.4 Simulation Results 204
- 7.3 Conclusions 205
- 8 Model-Free Adaptive Control for Complex Connected Systems and Modularized Controller Design 207
- 8.1 Introduction 207
- 8.2 MFAC for Complex Connected Systems 208
- 8.2.1 Series Connection 209
- 8.2.2 Parallel Connection 212
- 8.2.3 Feedback Connection 214
- 8.2.4 Complex Interconnection 217
- 8.2.5 Simulation Results 219
- 8.2.5.1 Series, Parallel, and Feedback Connection 219
- 8.2.5.2 Complex Interconnection 220
- 8.3 Modularized Controller Design 223
- 8.3.1 Estimation-Type Control System Design 223
- 8.3.2 Embedded-Type Control System Design 229
- 8.3.2.1 Embedded-Type Control System Design for Nonrepetitive Systems 229
- 8.3.2.2 Modularized Controller Design Scheme for Repetitive Systems 232
- 8.3.3 Simulations 235
- 8.4 Conclusions 238
- 9 Robustness of Model-Free Adaptive Control 241
- 9.1 Introduction 241
- 9.2 MFAC in the Presence of Output Measurement Noise 242
- 9.2.1 Robust Stability Analysis 242
- 9.2.2 Simulations 247
- 9.3 MFAC in the Presence of Data Dropouts 247
- 9.3.1 Robust Stability Analysis 249
- 9.3.2 MFAC Scheme with Data-Dropped Compensation 252
- 9.3.3 Simulations 258
- 9.4 Conclusions 259
- 10 Symmetric Similarity for Control System Design 261
- 10.1 Introduction 261
- 10.2 Symmetric Similarity for Adaptive Control Design 263
- 10.2.1 Concepts and Design Principle of Symmetric Similarity 264
- 10.2.2 Adaptive Control with Symmetric Similarity Structure 266
- 10.2.2.1 Adaptive Control with Symmetric Similarity Structure for Linear Systems 266
- 10.2.2.2 Adaptive Control with Symmetric Similarity Structure for Nonlinear Systems 270
- 10.2.3 MFAC with Symmetric Similarity Structure 272
- 10.2.4 Simulations 273
- 10.2.4.1 Adaptive Control with Symmetric Similarity Structure 276
- 10.2.4.2 MFAC with Symmetric Similarity Structure 278
- 10.3 Similarity between MFAC and MFAILC 280
- 10.4 Similarity between Adaptive Control and Iterative Learning Control 283
- 10.4.1 Adaptive Control for Discrete-Time Nonlinear Systems 287
- 10.4.1.1 Problem Formulation 287
- 10.4.1.2 Adaptive Control Design 287
- 10.4.1.3 Stability and Convergence Analysis 288
- 10.4.2 Adaptive ILC for Discrete-Time Nonlinear Systems 293
- 10.4.2.1 Problem Formulation 293
- 10.4.2.2 Adaptive Iterative Learning Control Design 293
- 10.4.2.3 Stability and Convergence Analysis 294
- 10.4.3 Comparison between Adaptive Control and Adaptive ILC 301
- 10.5 Conclusions 304
- 11 Applications 305
- 11.1 Introduction 305
- 11.2 Three-Tank Water System 306
- 11.2.1 Experimental Setup 306
- 11.2.2 Three Data-Driven Control Schemes 308
- -- 11.2.2.1 MFAC Scheme 308
- 11.2.2.2 VRFT Method 308
- 11.2.2.3 IFT Method 309
- 11.2.3 Experimental Investigation 309
- 11.2.3.1 Experiment I 309
- 11.2.3.2 Experiment II 314
- 11.3 Permanent Magnet Linear Motor 314
- 11.3.1 Permanent Magnet Linear Motor System 316
- 11.3.1.1 Experimental Setup 316
- 11.3.1.2 MFAC Scheme 317
- 11.3.1.3 Experiments 319
- 11.3.2 Dual-Axis Linear Motor Gantry System 325
- 11.3.2.1 Experimental Setup 325
- 11.3.2.2 MFAC Scheme for the Dual-Axis Linear Motor Gantry System 326
- 11.3.2.3 Experiments 326
- 11.4 Freeway Traffic System 329
- 11.4.1 Macroscopic Traffic Model 331
- 11.4.2 Control Scheme 333
- 11.4.3 Simulations 334
- 11.5 Welding Process 339
- 11.5.1 Experimental Setup 339
- 11.5.2 Control Scheme 340
- 11.5.3 Simulations 341
- 11.5.4 Experimental Investigation 341
- 11.6 MW Grade Wind Turbine 343
- 11.6.1 Wind Turbine Blade Static Loading Control System 345
- 11.6.2 Control Scheme 346
- 11.6.3 Static Loading Experiment 347
- 11.7 Conclusions 348
- 12 Conclusions and Perspectives 351
- 12.1 Conclusions 351
- 12.2 Perspectives 353.