Cargando…

Model free adaptive control : theory and applications /

This book summarizes theory and applications of model-free adaptive control (MFAC), which is a pure data-driven model-free control method, and whose controller design and stability analysis merely depend on the measured input and output data of the controlled plants. Topics include: pseudo partial d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hou, Zhongsheng
Otros Autores: Jin, Shangtai
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, ©2014.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • 1 Introduction 1
  • 1.1 Model-Based Control 1
  • 1.1.1 Modeling and Identification 1
  • 1.1.2 Model-Based Controller Design 3
  • 1.2 Data-Driven Control 5
  • 1.2.1 Definition and Motivation of Data-Driven Control 6
  • 1.2.2 Object of Data-Driven Control Methods 7
  • 1.2.3 Necessity of Data-Driven Control Theory and Methods 8
  • 1.2.4 Brief Survey on Data-Driven Control Methods 10
  • 1.2.4.1 DDC Classification According to Data Usage 10
  • 1.2.4.2 DDC Classification According to Controller Structure Design 14
  • 1.2.5 Summary of Data-Driven Control Methods 15
  • 1.3 Preview of the Book 17
  • 2 Recursive Parameter Estimation for Discrete-Time Systems 19
  • 2.1 Introduction 19
  • 2.2 Parameter Estimation Algorithm for Linearly Parameterized Systems 20
  • 2.2.1 Projection Algorithm 21
  • 2.2.2 Least-Squares Algorithm 22
  • 2.2.2.1 Least-Squares Algorithm for Time-Invariant Parameter Estimation 22
  • 2.2.2.2 Modified Least-Squares Algorithm for Time-Varying Parameter Estimation 24
  • 2.3 Parameter Estimation Algorithm for Nonlinearly Parameterized Systems 27
  • 2.3.1 Projection Algorithm and Its Modified Form for Nonlinearly Parameterized Systems 27
  • 2.3.1.1 Existing Projection Algorithm 27
  • 2.3.1.2 Modified Projection Algorithm 28
  • 2.3.2 Least-Squares Algorithm and Its Modified Form for Nonlinearly Parameterized Systems 32
  • 2.3.2.1 Existing Least-Squares Algorithm 32
  • 2.3.2.2 Modified Least-Squares Algorithm 34
  • 2.4 Conclusions 44
  • 3 Dynamic Linearization Approach of Discrete-Time Nonlinear Systems 45
  • 3.1 Introduction 45
  • 3.2 SISO Discrete-Time Nonlinear Systems 47
  • 3.2.1 Compact Form Dynamic Linearization 47
  • 3.2.2 Partial Form Dynamic Linearization 53
  • 3.2.3 Full Form Dynamic Linearization 59
  • 3.3 MIMO Discrete-Time Nonlinear Systems 64
  • 3.3.1 Compact Form Dynamic Linearization 64
  • 3.3.2 Partial Form Dynamic Linearization 66
  • 3.3.3 Full Form Dynamic Linearization 69
  • 3.4 Conclusions 71
  • 4 Model-Free Adaptive Control of SISO Discrete-Time Nonlinear Systems 75
  • 4.1 Introduction 75
  • 4.2 CFDL Data Model Based MFAC 77
  • 4.2.1 Control System Design 77
  • 4.2.1.1 Controller Algorithm 77
  • 4.2.1.2 PPD Estimation Algorithm 78
  • 4.2.1.3 System Control Scheme 79
  • 4.2.2 Stability Analysis 80
  • 4.2.3 Simulation Results 87
  • 4.3 PFDL Data Model Based MFAC 93
  • 4.3.1 Control System Design 93
  • 4.3.1.1 Controller Algorithm 94
  • 4.3.1.2 PG Estimation Algorithm 94
  • 4.3.1.3 System Control Scheme 95
  • 4.3.2 Stability Analysis 96
  • 4.3.3 Simulation Results 104
  • 4.4 FFDL Data Model Based MFAC 108
  • 4.4.1 Control System Design 108
  • 4.4.1.1 Controller Algorithm 110
  • 4.4.1.2 PG Estimation Algorithm 111
  • 4.4.1.3 System Control Scheme 111
  • 4.4.2 Simulation Results 113
  • 4.5 Conclusions H8
  • 5 Model-Free Adaptive Control of MIMO Discrete-Time Nonlinear Systems 119
  • 5.1 Introduction 119
  • 5.2 CFDL Data Model Based MFAC 120
  • 5.2.1 Control System Design 120
  • 5.2.1.1 Controller Algorithm 121
  • 5.2.1.2 PJM Estimation Algorithm 122
  • 5.2.1.3 System Control Scheme 123
  • 5.2.2 Stability Analysis 124
  • 5.2.3 Simulation Results 132
  • 5.3 PFDL Data Model Based MFAC 134
  • 5.3.1 Control System Design 134
  • 5.3.1.1 Controller Algorithm 136
  • 5.3.1.2 PPJM Estimation Algorithm 137
  • 5.3.1.3 System Control Scheme 138
  • 5.3.2 Stability Analysis 139
  • 5.3.3 Simulation Results 145
  • 5.4 FFDL Data Model Based MFAC 149
  • 5.4.1 Control System Design 149
  • 5.4.1.1 Controller Algorithm 150
  • 5.4.1.2 PPJM Estimation Algorithm 151
  • 5.4.1.3 System Control Scheme 152
  • 5.4.2 Simulation Results 153
  • 5.5 Conclusions 156
  • 6 Model-Free Adaptive Predictive Control 157
  • 6.1 Introduction 157
  • 6.2 CFDL Data Model Based MFAPC 158
  • 6.2.1 Control System Design 158
  • 6.2.1.1 Controller Algorithm 160
  • 6.2.1.2 PPD Estimation Algorithm and Prediction Algorithm 161
  • 6.2.1.3 Control Scheme 162
  • 6.2.2 Stability Analysis 164
  • 6.2.3 Simulation Results 167
  • 6.3 PFDL Data Model Based MFAPC 171
  • 6.3.1 Control System Design 171
  • 6.3.1.1 Controller Algorithm 174
  • 6.3.1.2 PG Estimation Algorithm and Prediction Algorithm 174
  • 6.3.1.3 Control Scheme 176
  • 6.3.2 Simulation Results 177
  • 6.4 FFDL Data Model Based MFAPC 182
  • 6.4.1 Control System Design 182
  • 6.4.1.1 Controller Algorithm 184
  • 6.4.1.2 PG Estimation Algorithm 185
  • 6.4.1.3 Control Scheme 186
  • 6.4.2 Simulation Results 188
  • 6.5 Conclusions 190
  • 7 Model-Free Adaptive Iterative Learning Control 193
  • 7.1 Introduction 193
  • 7.2 CFDL Data Model Based MFAILC 195
  • 7.2.1 CFDL Data Model in the Iteration Domain 195
  • 7.2.2 Control System Design 198
  • 7.2.2.1 Controller Algorithm 198
  • 7.2.2.2 PPD Iterative Updating Algorithm 199
  • 7.2.2.3 CFDL-MFAILC Scheme 199
  • 7.2.3 Convergence Analysis 200
  • 7.2.4 Simulation Results 204
  • 7.3 Conclusions 205
  • 8 Model-Free Adaptive Control for Complex Connected Systems and Modularized Controller Design 207
  • 8.1 Introduction 207
  • 8.2 MFAC for Complex Connected Systems 208
  • 8.2.1 Series Connection 209
  • 8.2.2 Parallel Connection 212
  • 8.2.3 Feedback Connection 214
  • 8.2.4 Complex Interconnection 217
  • 8.2.5 Simulation Results 219
  • 8.2.5.1 Series, Parallel, and Feedback Connection 219
  • 8.2.5.2 Complex Interconnection 220
  • 8.3 Modularized Controller Design 223
  • 8.3.1 Estimation-Type Control System Design 223
  • 8.3.2 Embedded-Type Control System Design 229
  • 8.3.2.1 Embedded-Type Control System Design for Nonrepetitive Systems 229
  • 8.3.2.2 Modularized Controller Design Scheme for Repetitive Systems 232
  • 8.3.3 Simulations 235
  • 8.4 Conclusions 238
  • 9 Robustness of Model-Free Adaptive Control 241
  • 9.1 Introduction 241
  • 9.2 MFAC in the Presence of Output Measurement Noise 242
  • 9.2.1 Robust Stability Analysis 242
  • 9.2.2 Simulations 247
  • 9.3 MFAC in the Presence of Data Dropouts 247
  • 9.3.1 Robust Stability Analysis 249
  • 9.3.2 MFAC Scheme with Data-Dropped Compensation 252
  • 9.3.3 Simulations 258
  • 9.4 Conclusions 259
  • 10 Symmetric Similarity for Control System Design 261
  • 10.1 Introduction 261
  • 10.2 Symmetric Similarity for Adaptive Control Design 263
  • 10.2.1 Concepts and Design Principle of Symmetric Similarity 264
  • 10.2.2 Adaptive Control with Symmetric Similarity Structure 266
  • 10.2.2.1 Adaptive Control with Symmetric Similarity Structure for Linear Systems 266
  • 10.2.2.2 Adaptive Control with Symmetric Similarity Structure for Nonlinear Systems 270
  • 10.2.3 MFAC with Symmetric Similarity Structure 272
  • 10.2.4 Simulations 273
  • 10.2.4.1 Adaptive Control with Symmetric Similarity Structure 276
  • 10.2.4.2 MFAC with Symmetric Similarity Structure 278
  • 10.3 Similarity between MFAC and MFAILC 280
  • 10.4 Similarity between Adaptive Control and Iterative Learning Control 283
  • 10.4.1 Adaptive Control for Discrete-Time Nonlinear Systems 287
  • 10.4.1.1 Problem Formulation 287
  • 10.4.1.2 Adaptive Control Design 287
  • 10.4.1.3 Stability and Convergence Analysis 288
  • 10.4.2 Adaptive ILC for Discrete-Time Nonlinear Systems 293
  • 10.4.2.1 Problem Formulation 293
  • 10.4.2.2 Adaptive Iterative Learning Control Design 293
  • 10.4.2.3 Stability and Convergence Analysis 294
  • 10.4.3 Comparison between Adaptive Control and Adaptive ILC 301
  • 10.5 Conclusions 304
  • 11 Applications 305
  • 11.1 Introduction 305
  • 11.2 Three-Tank Water System 306
  • 11.2.1 Experimental Setup 306
  • 11.2.2 Three Data-Driven Control Schemes 308
  • -- 11.2.2.1 MFAC Scheme 308
  • 11.2.2.2 VRFT Method 308
  • 11.2.2.3 IFT Method 309
  • 11.2.3 Experimental Investigation 309
  • 11.2.3.1 Experiment I 309
  • 11.2.3.2 Experiment II 314
  • 11.3 Permanent Magnet Linear Motor 314
  • 11.3.1 Permanent Magnet Linear Motor System 316
  • 11.3.1.1 Experimental Setup 316
  • 11.3.1.2 MFAC Scheme 317
  • 11.3.1.3 Experiments 319
  • 11.3.2 Dual-Axis Linear Motor Gantry System 325
  • 11.3.2.1 Experimental Setup 325
  • 11.3.2.2 MFAC Scheme for the Dual-Axis Linear Motor Gantry System 326
  • 11.3.2.3 Experiments 326
  • 11.4 Freeway Traffic System 329
  • 11.4.1 Macroscopic Traffic Model 331
  • 11.4.2 Control Scheme 333
  • 11.4.3 Simulations 334
  • 11.5 Welding Process 339
  • 11.5.1 Experimental Setup 339
  • 11.5.2 Control Scheme 340
  • 11.5.3 Simulations 341
  • 11.5.4 Experimental Investigation 341
  • 11.6 MW Grade Wind Turbine 343
  • 11.6.1 Wind Turbine Blade Static Loading Control System 345
  • 11.6.2 Control Scheme 346
  • 11.6.3 Static Loading Experiment 347
  • 11.7 Conclusions 348
  • 12 Conclusions and Perspectives 351
  • 12.1 Conclusions 351
  • 12.2 Perspectives 353.