|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_ocn868232129 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
140116s2013 cau o 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d UMI
|d YDXCP
|d GO3
|d COO
|d DEBBG
|d CUS
|d DEBSZ
|d OCLCQ
|d OCLCF
|d OCLCQ
|d TEFOD
|d EBLCP
|d FEM
|d NRC
|d OCLCQ
|d CEF
|d UAB
|d AU@
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 863150688
|a 868236027
|a 968115838
|a 969039213
|
020 |
|
|
|a 9781491945001
|q (electronic bk.)
|
020 |
|
|
|a 1491945001
|q (electronic bk.)
|
020 |
|
|
|a 9781491944981
|
020 |
|
|
|a 1491944986
|
020 |
|
|
|a 9781491945018
|
020 |
|
|
|a 149194501X
|
020 |
|
|
|z 1449367836
|
020 |
|
|
|z 9781449367831
|
029 |
1 |
|
|a AU@
|b 000056321269
|
029 |
1 |
|
|a AU@
|b 000067100244
|
029 |
1 |
|
|a DEBBG
|b BV041778278
|
029 |
1 |
|
|a DEBSZ
|b 40432763X
|
029 |
1 |
|
|a GBVCP
|b 81322506X
|
035 |
|
|
|a (OCoLC)868232129
|z (OCoLC)863150688
|z (OCoLC)868236027
|z (OCoLC)968115838
|z (OCoLC)969039213
|
037 |
|
|
|a CL0500000358
|b Safari Books Online
|
050 |
|
4 |
|a QA76.73.P98
|
072 |
|
7 |
|a COM
|x 051010
|2 bisacsh
|
082 |
0 |
4 |
|a 005.13/3
|b 23
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Collette, Andrew.
|
245 |
1 |
0 |
|a Python and HDF5 /
|c Andrew Collette.
|
264 |
|
1 |
|a Sebastopol, Calif. :
|b O'Reilly Media, Inc.,
|c 2013.
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (135 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes. Through real-world examples and practical exercises, you'll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you're familiar with the basics of Python data analysis, this is an ideal introduction to HDF5. Get set up with HDF5 tools and create your first HDF5 file Work with datasets by learning the HDF5 Dataset object Understand advanced features like dataset chunking and compression Learn how to work with HDF5's hierarchical structure, using groups Create self-describing files by adding metadata with HDF5 attributes Take advantage of HDF5's type system to create interoperable files Express relationships among data with references, named types, and dimension scales Discover how Python mechanisms for writing parallel code interact with HDF5.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Mathematics
|x Data processing.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Mathématiques
|x Informatique.
|
650 |
|
7 |
|a COMPUTERS
|x Programming Languages
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Advanced.
|2 bisacsh
|
650 |
|
7 |
|a Mathematics
|x Data processing
|2 fast
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Collette, Andrew.
|t Python and HDF5
|z 1449367836
|w (OCoLC)859383794
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781491944981/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1489987
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 654684
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11305400
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11323948
|
994 |
|
|
|a 92
|b IZTAP
|