|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
OR_ocn865579743 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
131219t20132014njua ob 001 0 eng d |
040 |
|
|
|a UMI
|b eng
|e pn
|c UMI
|d COO
|d DEBBG
|d DEBSZ
|d OCLCQ
|d OCLCF
|d OCLCQ
|d CEF
|d AU@
|d CNCEN
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9780133359084
|
020 |
|
|
|a 0133359085
|
020 |
|
|
|a 0321898656
|
020 |
|
|
|a 9780321898654
|
020 |
|
|
|z 9780321898654
|
029 |
1 |
|
|a DEBBG
|b BV041777822
|
029 |
1 |
|
|a DEBSZ
|b 404322816
|
029 |
1 |
|
|a GBVCP
|b 782688829
|
035 |
|
|
|a (OCoLC)865579743
|
037 |
|
|
|a CL0500000353
|b Safari Books Online
|
050 |
|
4 |
|a QA76.9.D32
|b M376 2013
|
082 |
0 |
4 |
|a 005.74/3
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Manoochehri, Michael.
|
245 |
1 |
0 |
|a Data just right :
|b introduction to large-scale data & analytics /
|c Michael Manoochehri.
|
246 |
3 |
|
|a Introduction to large-scale data and analytics
|
260 |
|
|
|a Upper Saddle River, NJ :
|b Addison-Wesley,
|c 2013, ©2014.
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from title page (Safari, viewed Dec. 12, 2013).
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a Making Big Data Work: Real-World Use Cases and Examples, Practical Code, Detailed Solutions Large-scale data analysis is now vitally important to virtually every business. Mobile and social technologies are generating massive datasets; distributed cloud computing offers the resources to store and analyze them; and professionals have radically new technologies at their command, including NoSQL databases. Until now, however, most books on "Big Data" have been little more than business polemics or product catalogs. Data Just Right is different: It's a completely practical and indispensable guide for every Big Data decision-maker, implementer, and strategist. Michael Manoochehri, a former Google engineer and data hacker, writes for professionals who need practical solutions that can be implemented with limited resources and time. Drawing on his extensive experience, he helps you focus on building applications, rather than infrastructure, because that's where you can derive the most value. Manoochehri shows how to address each of today's key Big Data use cases in a cost-effective way by combining technologies in hybrid solutions. You'll find expert approaches to managing massive datasets, visualizing data, building data pipelines and dashboards, choosing tools for statistical analysis, and more. Throughout, the author demonstrates techniques using many of today's leading data analysis tools, including Hadoop, Hive, Shark, R, Apache Pig, Mahout, and Google BigQuery. Coverage includes Mastering the four guiding principles of Big Data success--and avoiding common pitfalls Emphasizing collaboration and avoiding problems with siloed data Hosting and sharing multi-terabyte datasets efficiently and economically "Building for infinity" to support rapid growth Developing a NoSQL Web app with Redis to collect crowd-sourced data Running distributed queries over massive datasets with Hadoop, Hive, and Shark Building a data dashboard with Google BigQuery Exploring large datasets with advanced visualization Implementing efficient pipelines for transforming immense amounts of data Automating complex processing with Apache Pig and the Cascading Java library Applying machine learning to classify, recommend, and predict incoming information Using R to perform statistical analysis on massive datasets Building highly efficient analytics workflows with Python and Pandas Establishing sensible purchasing strategies: when to build, buy, or outsource Previewing emerging tre ...
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Databases.
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
7 |
|a Big data
|2 fast
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Databases
|2 fast
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9780133359084/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|